八年级上册数学期末练习培优提高(二)
姓名:
一、:
1.分式 有意义则x的范围是( )
A.x ≠ 2 B.x ≠ ? 2 C.x ≠ 0且x ≠ ? 2 D.
2.以下五家银行行标中,既是中心对称图形又是轴对称图形的有 ( )
A.1个B.2个C.3个D.4个
3.内角和与外角和相等的多边形是( )
A.三角形 B.四边形 C.五边形 D.六边形
4.下列命题中的真命题是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.有一组对边和一组对角分别相等的四边形是平行四边形
C.两组对角分别相等的四边形是平行四边形
D.两条对角线互相垂直且相等的四边形是正方形
5.若点 (a,b)在第四象限,则点N (? a,?b + 2)在( )
A.第一象限 B.第二象限 C.第三象限D.第四象限.
6.如图,已知E、F、G分别是△ABC各边的中点,△EBF的面积为2,则△AB C的面积为( )A.2B.4C.6D.8
(6题图) (7题图)
7.如图,在矩形ABCD中,O是BC的中点,∠AOD = 90°,若矩形ABCD的周长为30c,则AB的长为( )A.5 c; B.10 c; C.15 c; D.7.5 c
8.下列各式中,正确的是( )
A . =±4 B.± =4 C. = -3 D. = - 4
9.如图,E为矩形ABCD的边CD上的一点, AB=AE=4,BC=2,则∠BEC是( )
A.15° B.30° C.60° D.75°
(9题图) (10题图) (14题图)
10. 如图,点O是矩形ABCD的对称中心,E是AB边上的点,沿CE折叠后,
点B恰好与点O重合,若BC=3,则折痕CE= ( )
A.23 B.332 C. 3 D.6
11.已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为( )
A.y= x+2; B.y= ?x+2; C.y= x+2或y=?x+2; D. y= - x+2或y = x-2
12.在同一坐标系中,对于以下几个函数 ①y=-x-1 ②y=x+1 ③y=-x+1 ④y=-2(x+1)的图象有四种说法 ⑴ 过点(-1,0)的是①和③、⑵ ②和④的交点在y轴上、⑶ 互相平行的是①和③、⑷ 关于x轴对称的是②和③。那么正确说法的个数是( )
A.4个 B.3个 C.2个 D。1个
13.把正比例函数y=2x图象向上平移3个单位,得到图象解析式是( )
A.y=2x-3 B.y=2x+3 C.y=3x-2 D.y=3x+2
14. 如图,给出下列四组条件: ① ;② ;③ ;④ .其中,能使 的条件共有( )
A.1组; B.2组; C.3组; D.4组
15. 已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为
A.1或-2 B.2或-1 C.3 D.4 ( )
二、题:
1. 用任意两个全等的直角三角形拼下列图形:①平行四边形②矩形③菱形④正方形⑤等腰三角形⑥等边三角形其中一定能够拼成的图形是___________(只填序号).
2.已知直线 与x轴、y轴围成一个三角形,则这个三角形面积为___________.
3.如图,梯形ABCD中,DC//AB,∠D = 90 ,AD = 4 c,AC = 5 c, ,那么AB = ___________.
(3题图) (4题图) (5题图)
4.如图,已知函数y = x + b和y = ax + 3的图像交点为P,则不等式x + b > ax + 3的解集为___________.
5.如图,将边长为1的正方形ABCD绕A点按逆时针方向旋转30°,至正方形AB′C′D′,则旋转前后正方形重叠部分的面积是___________.
6.如图,梯 形ABCD中,△ABP的面积为20平方厘米,△CDQ的面积为35平方厘米,则阴影四边形的面积等于___________平方厘米.
7.下图表示甲、乙 两名选手在一次自行车越野赛中,路程y(千 米)随时间x(分)变化的图象.下面几个结论: ①比赛开始24分钟时,两人第一次相遇.②这次比赛全程是10千米.③比赛开始38分钟时,两人第二次相遇. 正确的结论为 .
三、解答题:
1.化简:(1). (2).
2.已知直线 与直线 交于y轴上同一点,且过直线 上的点(,6),求其解析式.
3.如图,平行四边形ABCD中,EF垂直平分AC,与边AD、BC分别相交于点E、F.试说明四边形AECF是菱形.
4. 如图,△ABC中,∠BAC=90°,BG平分∠ABC,GF⊥BC于点F,AD⊥BC于点D,交BG于点E,连结EF。(1)、求证:①、AE=AG;②四边形AEFG为菱形。(2)、若AD=8,BD=6,求AE的长。
5. 如图,已知正方形ABCD,点E是BC上一点,以AE为边作正方形AEFG。
(1)、连结GD,求证:△ADC≌△ABE;(2)、连结FC,求证:∠FCN=45°;
(3)、请问在AB边上是否存在一点Q,使得四边形DQEF是平行四边形?若存在,请证明;若不存在,请说明理由。
6. 正方形ABCD中,E为AB上一点,F为CB延长线上一点 ,且∠EFB = 45 .
(1)求证:AF = CE;(2)你认为AF与CE有怎样的位置关系?说明理由.
7.如图,已知AB∥DC,AE⊥DC,AE = 12,BD = 15,AC = 20,求梯形ABCD的面积.
8.我市某乡A,B两村盛产苹果,A村有苹果200 t,B村有苹果300 t.现将这些苹果运到C,D两个 冷藏仓库,已知C仓库可储存240 t,D仓库可储存260 t;从A村运往C,D两处的费用分别为每吨20元和25元,从B村运往C,D两处的费用分别为每吨15元和18元,设从A村运往C仓库的苹果重量为x t,A,B两村运往两仓库的苹果运输费用分别为yA元和yB元.
(1)求出yB,yA与x之间的函数关系式;
yA = ________________________,yB = ________________________.
(2)试讨论A,B两村中,哪个村的运费较少;
(3)考虑到B村的经济承受能力,B村的苹果运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.
本文来自:逍遥右脑记忆 http://www.jiyifa.com/chuer/216283.html
相关阅读:
闂備胶绮〃鍛存偋婵犲倴缂氶柛顐ゅ枔閻濆爼鏌eΔ鈧悧濠囷綖閺嶎厽鐓ユ繛鎴炵懅椤e弶绻濋埀顒佸閺夋垶顥濋梺鎼炲劀閸愨晜娈介梺璇叉捣閹虫挸锕㈤柆宥呮瀬閺夊牄鍔庨々鏌ユ煙閻戞ɑ纾荤紒顔芥尵缁辨捇宕橀埡浣轰患闂佽桨闄嶉崐婵嬬嵁鐎n喗鍋い鏍ㄧ椤斿洭姊洪崨濠勬噭闁搞劏鍋愬☉鐢稿焵椤掑嫭鐓熸慨妯煎帶濞呮瑧绱掓潏銊х畼闁归濞€婵$兘鏁傞悾灞稿亾椤曗偓閹嘲鈻庤箛鎾亾婵犳艾纾婚柨婵嗘椤╃兘鏌涘☉鍗炲闁轰讲鏅犻幃璺衡槈閺嵮冾瀱缂傚倸绉靛Λ鍐箠閹捐宸濇い鏃囧Г鐎氳櫕绻涚€涙ḿ鐭嬪ù婊€绮欓崺鈧い鎺嗗亾闁稿﹦鎳撻敃銏ゅ箥椤旀儳宕ュ┑鐐叉濞寸兘鎯屽畝鍕厵缂備焦锚婵啰绱掔捄铏逛粵缂佸矂浜堕崺鍕礃瑜忕粈鈧梺璇插缁嬫帡鏁嬮梺绋款儏缁夊墎鍒掑顑炴椽顢旈崪鍐惞闂備礁鎼悧鍡欑矓鐎涙ɑ鍙忛柣鏂垮悑閺咁剟鎮橀悙璺轰汗闁荤喐绻堥弻鐔煎几椤愩垹濮曞┑鐘亾濞撴埃鍋撴鐐茬Ч閸┾偓妞ゆ帒瀚€氬顭跨捄渚剱缂傚秮鍋撻梻浣瑰缁嬫垶绺介弮鍌滅當濠㈣埖鍔曠粻銉╂煙缁嬪潡顎楁い搴㈡崌閺岋綁鍩¢崗锕€缍婂畷锝堫槻闁崇粯妫冨鎾倷閸忓摜鐭楅梺鑽ゅУ閸斞呭緤婵傜ǹ绠查柕蹇嬪€曡繚闂佺ǹ鏈崙鐟懊洪妶澶嬬厱婵炲棙鍔曢悘鈺傤殽閻愬弶鍠樼€殿喚鏁婚、妤呭磼濠婂啳顔夐梻浣告惈閻楀棝藝閹殿喚鐭撻柛锔诲幐閸嬫挸顫濋浣规嫳婵犲痉銈勫惈闁诡噮鍣i、妯衡攽鐎n偅鐣堕梻浣告惈椤р偓闁瑰嚖鎷�/闂佸搫顦弲婊呮崲閸愵亝鍏滈柤绋跨仛娴溿倖绻濋棃娑掔湅婵炲吋鍔欓弻锝夊Ω閵夈儺浠奸梺鍝ュ仜椤曨參鍩€椤掆偓濠€鍗炩枍閵忋垺顫曟繝闈涚墛鐎氭氨鈧懓瀚妯煎緤濞差亝鈷戞い鎰剁磿缁愭棃鏌涚€n偆澧紒鍌涘浮楠炲棝寮堕幐搴晭 bjb@jiyifa.com 濠电偞鍨堕幐楣冨磻閹惧瓨鍙忛柕鍫濐槹閺咁剟鎮橀悙璺轰汗妞ゅ繗浜槐鎾存媴閸濄儳顔夐梺缁樻惈缁辨洟鍩€椤掆偓濠€閬嶅磿閹寸姵顫曟繝闈涱儏鐎氬銇勯幒鎴濃偓鏄忋亹閺屻儲鍊堕煫鍥ㄦ尰椤ョ娀鏌e┑鍥╂创鐎规洘姘ㄩ幏鐘诲箵閹烘柧鎮i梻鍌氬€哥€氥劑宕愰幋锕€鐒垫い鎺戯攻鐎氾拷