第三 图形的平移与旋转
总时:7时 使用人:
备时间:第四周 上时间:第五周
第5时:简单的旋转作图
教学目标
知识目标:
1.简单平面图形旋转后的图形的作法.
2.确定一个三角形旋转后的位置的条.
能力训练:
1.对具有旋转特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能.
2.能够按要 求作出简单平面图形旋转后的图形.
情感与价值观:
1.通过画图,进一步培养学生的动手操作能力.
2.对具有旋转特征的图形进行观察、分析、画图过程中,进一步发展学生的审美观念.
教学重点:简单平面图形旋转后的图形的作法.
教学难点:简单平面图形旋转后的图形的作法.
教学准备:多媒体
教学过程
第一环节 巧设情境问题,引入题(10分钟,学生观察,发现知识)
1.下列一组图形变换属于旋转变换的是( )
2.大家看一面小旗子(出示小旗子,然后一边演示一边叙述),把这面小旗子绕旗杆底端旋转90°后,这时小旗子的位置发生了变化,形成了新的图案,你能把这时的图案画出吗?
在原图上找了四个点,即O点、A点、B点、C点,如图(教师把该生所画的图在投影上放影)这四个点是表示这面小旗子的关键点.因为旋转前后两个图形的对应点到旋转中心的距离相等,对应 点与旋转中心的连线所组成的旋转角彼此相等,所以根据已知:要把这面小旗绕O点按顺时针旋转90°.我在方格中找到点A,B,C的对应点A′,B′,C′,然 后连接, 就得到了所求作的图形.
作图的一个要点:找图形的关键点。
这面小旗子是结构简单的平面图形,在方格纸上大家能画出它绕点旋转后的图形,那么在没有方格纸或旋转角不是特殊角的情况下,能否也画出简单平面图形旋转后的图形呢?
这节我们就研究:简单的旋转作图.
第二环节 观察操作、探索归纳旋转的作法(15分钟,学生观察、动手操作)
⑴观察、作图
先利用多媒体逐一演示点、线段、多边形的旋转,再让学生观察、动手画图
点的旋转:
(以单摆为模型,并将此抽象为“点的旋转”)
操作①:试着找一找如图A点绕O点顺时针旋转30°后所在的位置A’
线段的旋转:
操作②:试着画一画线段AB绕O点逆时针旋转90°后所得的线段(O点在线段外)
多边形的旋转:
操作③:试着画△ABC绕O点逆时针旋转60°后所得的三角形
⑵例题讲评、规范作图
例1 如图,△ABC绕O点旋转后,顶点A的对应点为点D,试确定顶点B,C对应点的位置,以及旋转后的三角形.
分析 :一般作图题,在分析如何求作时,都要先假设已经把所求作的图形作出,然后再根据性质,确定如何操作.[
假设顶点B,C的对应点分别为点E,点F,则∠BOE,∠COF,∠AOD都是旋转角.△DEF就是△ABC绕点O旋转后的三角形.根据旋转的性质知道:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,即旋转角相等,对应点到旋转中心的距离相等,则∠BOE=∠COF=∠AOD,OE=OB,OF=OC,这样即可求作出旋转后的图形.[
解:(1)连接OA,OD,OB,OC.
(2)如下图,分别以OB、OC为一边作∠BOE、∠COF,使得∠BOE=∠COF=∠AOD.
(3)分别在射线O E、OF上截取OE=OB、OF=OC.
(4)连接EF,ED,FD.
△DEF,就是△ABC绕O点旋转后的图形.
本题还有没有其他作法,可以作出△ABC绕O点旋转后的图形△DEF吗?
1.可以先作出点B的对应点E,连接DE,然后以点D、E为圆心,分别以AC、BC为半径画弧,两弧交于点F,连接DF,EF,则△DEF就是△ABC绕点O旋转后的图形.
2.也可以先作出点C的对应点F,然后连接DF.因为△ABC与△DEF全等,所以既可以用两边夹角,也可以用两角夹边,找到点B的对应点E,即△DEF.
确定一个三角形旋转后的位置的条为:
(1)三角形原的位置. (2)旋转中心. (3)旋转角.
这三个条缺一不可.只有这三个条都具备,我们才能准确地找到一个三角形绕点旋转后的位置,进而作出它旋转后的图形.
第三环节 堂练习(10分钟,学生先独立完成,后全班交流)
1.本随堂练习.
解:如下图,先确定字母N的四个端点绕它右下侧的顶点按顺时针方向旋转90°后的位置,然后连线.
2.小明和妈妈在广场游玩时, 看见许多喷水嘴正在给草坪浇水。 喷水嘴不停地旋转着, 但每时每刻喷出的水雾总是四分之一圆。妈妈问:“小明,如果喷出水雾的范围内有一正方形, 喷水嘴位 于它的中心, 你知道喷水嘴在旋转的过程中瞬时浇 过正方形区域的面积是多少吗? ”同学们,请你替小明做出回答。
第四环节 时小结(5分钟,学生回顾,归纳)
本节我们通过作平面图形旋转后的图形,进一步理解了旋转的性质,并且还知道要确定一个三角形旋转后的位置,需要有:①此三角形原的位置.②旋转中心.③旋转角等三个条.
在作图时,要正确运用直尺和圆规,进而准确作出旋转后的图形.要注意语言的表达.
第五环节 后作业:
B组(中等生)创新设计
C组(后三分之一生)创新设计
A组(优等生)创新设计
拔高题:
1.将一个直角三角板绕30°角的顶点顺时针旋转,使一直角边与原斜边在同一条直线上(如图所示)。你知道旋转角是多少吗?连结BB’,△ABB’有什么特征吗?
2.在五边形ABCDE中,AB=AE、BC+DE=CD,∠ABC+∠AED=180° .
求证:AD平分∠CDE.
连接AC,将△ABC绕点A旋转 ∠BAE的度数到△AEF的位置,因为AB=AE,所以AB与AE重合.因为∠ABC+∠AED=180°,且∠AEF=∠ABC,所以∠AEF+∠AED=180°.所以D,E,F三点在一直线上,AC=AF,BC=EF.
在△ADC与△ADF中,DF=DE+EF=DE+BC=CD.,AF=AC,AD=AD
所以,△ ADC≌△ADF(SSS),因此,∠ADC=∠ADF,即:AD平分∠CDE.
3.如下图是某设 计师设计的方桌布图案的一部分,请你运用旋转变换的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°、180°、270°,并画出它在各象限内的图形,你会得到一个美丽的“立体图形”!但是涂阴影时要注意利用旋转变换的特点,不要涂错了位置,否则不会出现理想的效果 ,你试一试吧!
四、教学反思
本文来自:逍遥右脑记忆 http://www.jiyifa.com/chuer/41925.html
相关阅读:简单的平移作图2
闂備胶绮〃鍛存偋婵犲倴缂氶柛顐ゅ枔閻濆爼鏌eΔ鈧悧濠囷綖閺嶎厽鐓ユ繛鎴炵懅椤e弶绻濋埀顒佸閺夋垶顥濋梺鎼炲劀閸愨晜娈介梺璇叉捣閹虫挸锕㈤柆宥呮瀬閺夊牄鍔庨々鏌ユ煙閻戞ɑ纾荤紒顔芥尵缁辨捇宕橀埡浣轰患闂佽桨闄嶉崐婵嬬嵁鐎n喗鍋い鏍ㄧ椤斿洭姊洪崨濠勬噭闁搞劏鍋愬☉鐢稿焵椤掑嫭鐓熸慨妯煎帶濞呮瑧绱掓潏銊х畼闁归濞€婵$兘鏁傞悾灞稿亾椤曗偓閹嘲鈻庤箛鎾亾婵犳艾纾婚柨婵嗘椤╃兘鏌涘☉鍗炲闁轰讲鏅犻幃璺衡槈閺嵮冾瀱缂傚倸绉靛Λ鍐箠閹捐宸濇い鏃囧Г鐎氳櫕绻涚€涙ḿ鐭嬪ù婊€绮欓崺鈧い鎺嗗亾闁稿﹦鎳撻敃銏ゅ箥椤旀儳宕ュ┑鐐叉濞寸兘鎯屽畝鍕厵缂備焦锚婵啰绱掔捄铏逛粵缂佸矂浜堕崺鍕礃瑜忕粈鈧梺璇插缁嬫帡鏁嬮梺绋款儏缁夊墎鍒掑顑炴椽顢旈崪鍐惞闂備礁鎼悧鍡欑矓鐎涙ɑ鍙忛柣鏂垮悑閺咁剟鎮橀悙璺轰汗闁荤喐绻堥弻鐔煎几椤愩垹濮曞┑鐘亾濞撴埃鍋撴鐐茬Ч閸┾偓妞ゆ帒瀚€氬顭跨捄渚剱缂傚秮鍋撻梻浣瑰缁嬫垶绺介弮鍌滅當濠㈣埖鍔曠粻銉╂煙缁嬪潡顎楁い搴㈡崌閺岋綁鍩¢崗锕€缍婂畷锝堫槻闁崇粯妫冨鎾倷閸忓摜鐭楅梺鑽ゅУ閸斞呭緤婵傜ǹ绠查柕蹇嬪€曡繚闂佺ǹ鏈崙鐟懊洪妶澶嬬厱婵炲棙鍔曢悘鈺傤殽閻愬弶鍠樼€殿喚鏁婚、妤呭磼濠婂啳顔夐梻浣告惈閻楀棝藝閹殿喚鐭撻柛锔诲幐閸嬫挸顫濋浣规嫳婵犲痉銈勫惈闁诡噮鍣i、妯衡攽鐎n偅鐣堕梻浣告惈椤р偓闁瑰嚖鎷�/闂佸搫顦弲婊呮崲閸愵亝鍏滈柤绋跨仛娴溿倖绻濋棃娑掔湅婵炲吋鍔欓弻锝夊Ω閵夈儺浠奸梺鍝ュ仜椤曨參鍩€椤掆偓濠€鍗炩枍閵忋垺顫曟繝闈涚墛鐎氭氨鈧懓瀚妯煎緤濞差亝鈷戞い鎰剁磿缁愭棃鏌涚€n偆澧紒鍌涘浮楠炲棝寮堕幐搴晭 bjb@jiyifa.com 濠电偞鍨堕幐楣冨磻閹惧瓨鍙忛柕鍫濐槹閺咁剟鎮橀悙璺轰汗妞ゅ繗浜槐鎾存媴閸濄儳顔夐梺缁樻惈缁辨洟鍩€椤掆偓濠€閬嶅磿閹寸姵顫曟繝闈涱儏鐎氬銇勯幒鎴濃偓鏄忋亹閺屻儲鍊堕煫鍥ㄦ尰椤ョ娀鏌e┑鍥╂创鐎规洘姘ㄩ幏鐘诲箵閹烘柧鎮i梻鍌氬€哥€氥劑宕愰幋锕€鐒垫い鎺戯攻鐎氾拷