数学试卷
【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页,考试时间120分种,满分150分。考试结束后,第Ⅱ卷和答题卡按规定装袋上交。
第Ⅰ卷(选择题 共40分)
注意事项:
1.答第Ⅰ卷前,考生务必将自已的学校、姓名、准考证号、考试科目填涂在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上。
3.考试结束后,本试卷由考场统一收回,集中管理。
一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求
1.-3的相反数是
A.3 B.-3 C. D.
2.下列计算错误的是
A.--2=-2 B.(a2)3=a5 C.2x2+3x2=5x2 D.
3.左图所示的是三通管的立体图,则这个几何体的俯视图是
A. B. C. D.
4.以下问题,不适合用全面调查的是
A.了解全班同学每周体育锻炼的时间 B.旅客上飞机前的安检
C.学校招聘教师,对应聘人员面试 D.了解全市中小学生每天的零花钱
5.已知反比例函数y= 的图象经过点(2,-2),则k的值为
A.4B.- C.-4 D.-2
6.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是
A. B. C. D.
7.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是
A.(-3,2) B.(-1,2) C.(1,2) D. (1,-2)
8.用半径为3cm,圆心角是1200的扇形围城一个圆锥的侧面,则这个圆锥的底面半径为
A. 2πcm B.1.5cm C.πcm D.1cm
9.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数作为三角形三边的长,能构成三角形的概率是
A. B. C. D.1
10.如图,在△ABC中,∠C=900,∠B=300,以A为圆心,任意长为半径画弧分别交AB、AC
于点M和N,再分别以M、N为圆心,大于 的长为半
径画弧,两弧交于点P,连结AP并延长交BC于点D,则
下列说法中正确的个数是
①AD是∠BAC的平分线;②∠ADC=600 ; ③点D在AB的
中垂线上; ④S△DAC∶S△ABC=1∶3
A.1 B.2 C.3 D.4
遂宁市2013年初中毕业暨高中阶段学校招生考试
数学试卷
第Ⅱ卷(非选择题 共110分)
注意事项:
1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。(需要作图请用铅笔)
2.答卷前将密封线内的项目填写清楚。
题号一二三四五六总分总分人
得分
二、填空题:本大题共5个小题,每小题共4分,共20分,把答案填在题中的横线上。
11. 我国南海海域的面积约为3600000?2,该面积用科学记数法应表示为 ▲ ?2。
12. 如图,有 一块含有60°角的直角三角板的两个顶点放在矩形的对边上.如果∠1=18°,那么∠2的度数是 ▲
13.若一个多边形的内角和是1260O,则这个多边形的边数
是 ▲
14.如图,△ABC的三个顶点都在5×5的网格(每个小正方形的
边长均为1个单位长度)的格点上,将△ABC绕点B逆时针
旋转到△A/BC/的位置,且点A/、C/仍落在格点上,则图中阴
影部分的面积约是 ▲ (π≈3.14,结果精确到0.1)
15.为庆祝“六?一”儿童节,某幼儿园举行用火柴棒摆“金
鱼”比赛.如图所示:按照上面的规律,摆第( )图,需用火柴棒的根数为 ▲
三、(本大题共3小题,每小题7分,共21分)
16.计算:
17. 先化简,再求值: ,其中
18.解不等式组: 并把它的解集在数轴上表示出来.
四、(本大题共3小题,每小题9分,共27分)
19.如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF。
求证:⑴△ADE≌△CDF
⑵四边形ABCD是菱形
20.2013年4月20日,我省雅安市芦山县发生了里氏7.0级强烈地震。某厂接到在规定时间内加工1500顶帐篷支援灾区人民的任务。在加工了300顶帐篷后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天加工多少顶帐篷?
21. 钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理。如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)
五、(本大题2个小题,每小题10分,共20分)
22. 我市某中学举行“中国梦?校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛。两个队各选出的5名选手的决赛成绩(满分为100分)如左图所示.
(1)根据图示填写下表;
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
23.四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务。为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商。经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元。经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费。另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人。
⑴分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数 之间的函数关系式;
(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.
六、(本大题2个小题,第24题10分,第25题12分,共22分)
24.如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N。
⑴求证:CF是⊙O的切线;
⑵求证:△ACM∽△DCN;
⑶若点M是CO的中点,⊙O的半径为4,
COS∠BOC= ,求BN的长。
25.如图,抛物线 与x轴交于点A(2,0),交y轴于点B(0, )直线y=kx 过点A与y轴交于点C与抛物线的另一个交点是D。
⑴求抛物线 与直线y=kx 的解析式;
⑵设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形,若存在请求出点P的坐标,若不存在,请说明理由;
⑶在⑵的条件下,作PN⊥AD于点N,设△PMN的周长为 ,点P的横坐标为x,求 与x的函数关系式,并求出 的最大值.
遂宁市2013年初中毕业暨高中阶段学校招生考试
数学试卷参考答案
一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求
1.A 2.B 3.A 4.D 5.C 6.B 7.C 8.D 9.C 10.D
二、填空题:本大题共5个小题,每小题共4分,共20分。
11.3.6×106 12.120 13.9 14.7.2 15.6n+2
三、(本大题共3小题,每小题7分,共21分)
16.解:原式=3+ -2-1 ………………4分
=3+1-2-1 ………………6分
=1 ………………7分
17.解:原式= ………………3分
= ………………4分
= ………………5分
当 时
= = = ………………7分
18.解:由①得:x>1 ………………2分
由②得:x≤4 ………………4分
将不等式①和②的解集表示在数轴上
………………5分
∴这个不等式的解集是1<x≤4 ………………7分
四、(本大题共3小题,第小题9分,共27分)
19. 解:⑴∵DE⊥AB,DF⊥BC
∴∠AED=∠CFD=900 ………………2分
∵四边形ABCD是平行四边形
∴∠A=∠C ………………4分
在△AED和△CFD中
∴△AED≌△CFD(AAS) ………………6分
⑵∵△AED≌△CFD
∴AD=CD ………………7分
∵四边形ABCD是平行四边形
∴四边形ABCD是菱形 ………………9分
20. 解:设该厂原来每天生产 顶帐篷 ………………1分
据题意得: ………………5分
解这个方程得x=100 ………………7分
经检验x=100是原分式方程的解 ………………8分
答:该厂原来每天生产100顶帐篷. ………………9分
21. 解:作BD⊥AC于D …………1分
由题意可知,∠BAC=45°,∠ABC=105°
∴∠ACB=180°-∠BAC-∠ABC= 30°……2分
在Rt△ABD中
BD=AB?sin∠BAD=20× (海里)
………………5分
在Rt△BCD中,BC= (海里) …………8分
答:此时船C与船B的距离是 海里。 ………………9分
五、(本大题2个小题,每小题10分,共20分)
22. 解:⑴ 填表:初中平均数85(分),众数85(分);高中部中位数80(分).
………………3分
⑵ 初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.
………………7分(判断正确给2分,分析合理给2分)
(3)∵ , …8分
.…9分
∴S12 <S22,因此,初中代表队选手成绩较为稳定。…………10分
23. 解:⑴总费用y1(元)和y2(元)与参演男生人数 之间的函数关系式分别是:
y1=0.7[120x+100(2x-100)]+2200=224x-4800 ………………2分
y2=0.8[100(3x-100)]=240x-8000 ………………4分
⑵当y1>y2时,即224x-4800>240x-8000,解得:x<200 …………5分
当y1 = y2时,即224x-4800=240x-8000,解得:x=200 …………6分
当y1<y2时,即224x-4800<240x-8000,解得:x>200 …………7分
即当参演男生少于200人时,购买B公司的服装比较合算;当参演男生等于200人时,购买两家公司的服装总费用相同,可任一家公司购买;当参演男生多于200人时,购买A公司的服装比较合算。 ………………10分
六、(本大题2个小题,第24题10分,第25题12分,共22分)
24. ⑴证明:∵△BCO中,BO=CO
∴∠B=BCO ………1分
在Rt△BCE中,∠2+∠B=900
又∵∠1=∠2
∴∠1+∠BCO=900即∠FCO=900 ………2分
∴CF是⊙O的切线; ………3分
⑵证明:∵AB是⊙O直径
∴∠ACB=∠FCO=900
∴∠ACB-∠BCO=∠FCO-∠BCO
即∠3=∠1
∴∠3=∠2 …………………4分
∵∠4=∠D …………………5分
∴△ACM∽△DCN …………………6分
⑶∵⊙O的半径为4,即AO=CO=BO=4,
在Rt△COE中,COS∠BOC=
∴OE=CO?COS∠BOC=4× =1
由此可得:BE=3,AE=5
由勾股定理可得:
…………8分
∵AB是⊙O直径,AB⊥CD
∴由垂径定理得:CD=2CE=2
∵△ACM∽△DCN
∴ ……………………9分
∵点M是CO的中点,CM=
∴
∴BN=BC-CN= ……………………10分
25. 解:⑴∵ 经过点A(2,0)和B(0, )
∴由此得: 解得:
∴抛物线的解析式是 …………………2分
∵直线y=kx 经过点A(2,0)
∴2k =0 解得:k=
∴直线的解析式是 …………………3分
⑵设P的坐标是( ),则M的坐标是(x, )
∴PM=( )-( )= ……4分
解方程组 解得:
∵点D在第三象限,则点D的坐标是(-8, )
由 得点C的坐标是(0, )
∴CE= -( )=6 …………………5分
由于PM∥y轴,要使四边形PMEC是平行四边形,必有PM=CE,
即 =6
解这个方程得:x1=-2,x2=-4 符合-8<x<2 ………6分
当x1=-2时,
当x1=-4时,
因此,直线AD上方的抛物线上存在这样的点P,使四边形PMEC是平行四边形,点P的坐标是(-2,3)和(-4, ) …………………8分
⑶在Rt△CDE中,DE=8,CE=6
由勾股定理得:DC=
∴△CDE的周长是24 …………………9分
∵PM∥y轴,容易证明△PMN∽△CDE
∴ , 即 …………10分
化简整理得: 与x的函数关系式是: …………11分
本文来自:逍遥右脑记忆 http://www.jiyifa.com/chusan/59277.html
相关阅读:2013年中考数学几何综合试题汇编
闂傚倸鍊搁崐鐑芥嚄閸撲礁鍨濇い鏍亼閳ь剙鍟村畷銊р偓娑櫭禍杈ㄧ節閻㈤潧孝闁稿﹤顕槐鎾愁潩閼哥數鍘卞銈嗗姂閸婃洟寮搁弮鍫熺厽婵犻潧妫涢崺锝夋煛瀹€瀣埌閾绘牠鏌嶈閸撶喖骞冭缁绘繈宕舵搴b棨闂備礁鎼粙渚€宕㈡禒瀣亗闁靛濡囩粻楣冩煙鐎电ǹ浠ч柟鍐叉噺閵囧嫰鏁愰崨顓犻獓缂備胶绮换鍫ュ春閳ь剚銇勯幒宥囶槮妞ゆ洟浜堕弻鈩冨緞鐎n亞浠稿銈冨劜缁诲牆顫忓ú顏勭闁绘劖褰冩俊褔姊洪崨濠傚闁哄懏绮岄埢鎾寸鐎n偀鎷洪柣鐘叉搐瀵爼骞戦敐澶嬬厵闁惧浚鍋呯亸顓㈡煥閺囨ê鐏查柡灞芥椤撳ジ宕ㄩ閿亾椤掑嫭鐓涘璺猴功婢ф垿鏌涢弬鍧楀弰闁靛棗鎳樺濠氬Ψ閿旀儳骞嶉梻浣虹帛閸ㄦ儼鎽紒鐐礃瀹曠數妲愰幒妤婃晩闁兼亽鍎遍弳妤冪磽娴d粙鍝洪柟鐟版搐閻e嘲顫滈埀顒勫春閳╁啯濯撮弶鐐靛閸嬪懘姊婚崒娆愮グ婵℃ぜ鍔戝钘夘吋婢跺﹦锛欏┑鐘绘涧椤戝洤鐣垫笟鈧幃妤呮晲鎼粹剝鐏嶉梺绋款儛娴滄繈濡甸崟顖氬唨闁靛ě灞炬婵$偑鍊栭弻銊ッ洪鐑嗘綎婵炲樊浜滃婵嗏攽閻樻彃顏柛锝庡弮濮婃椽骞栭悙鎻掝潊闂佺ǹ顑嗛崝鏇㈠煡婢舵劖鍋ㄧ紒瀣硶閸旓箑顪冮妶鍡楃瑨閻庢凹鍙冮幃锟犳偄閸涘﹤寮垮┑鈽嗗灣閸樠呮暜閼哥數绠鹃柛娑卞枤閹冲懐绱掓潏銊ョ瑲婵炵厧绻樻俊姝岊槾闁伙絽銈稿楦裤亹閹烘繃顥栨繝鐢靛亹閸嬫挻绻濈喊澶岀?闁稿繑锕㈠顐﹀磼閻愭潙浠奸柣蹇曞仧鏋ù婊呭亾閵囧嫰寮村Δ鈧禍楣冩⒑鐠団€虫灈闁搞垺鐓¢崺銏℃償閵堝洨鏉搁梺鍦檸閸ㄧ増绂嶉幆褉鏀介柣妯虹枃婢规ḿ鐥幆褜鐓奸柡灞诲妼閳规垿宕卞鍡橈骏婵$偑鍊愰弲婵嬪礂濮椻偓瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑娑綖閳哄懏鈷戦弶鐐村椤斿鏌¢崨顖氣枅妤犵偛鍟伴幑鍕偘閳╁喚娼旈梻浣告惈鐠囩偤宕橀崜褉鍋撴潏鈺冪=闁稿本鑹鹃埀顒€鎽滅划鏃堟濞磋櫕鐩畷姗€顢欓懖鈺冩瀮闂備浇顫夊畷姗€顢氳椤斿繐鈹戦崶銉ょ盎闂佸搫鍟ú銈堫暱闂佽瀛╂穱鍝勨枍閺囩姵宕叉繛鎴炲焹閸嬫挸鈽夊▎瀣窗闂佹椿鍘奸鍛存箒濠电姴艌閸嬫挾绱掗鐣屾噰鐎规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼崫鍕棞濞存粓绠栧铏圭矙閸栤€冲闂佺娅曢幑鍥极閸愵喖顫呴柕鍫濇噽椤撶厧顪冮妶鍡樷拹闁稿骸鍟块悾鐑藉Ψ閵夈垺鏂€闂佺粯鍔曞鍫曀夊⿰鍕閻庣數枪閸樻挳鏌熼姘冲闁伙絾绻堝畷鐔碱敆閸屾艾绠ョ紓鍌氬€搁崐鐑芥倿閿曞倹鏅┑鐘愁問閸犳牠宕幍顔筋潟闁圭儤姊瑰畷澶愭煣韫囨稈鍋撳☉姘垛攺缂傚倸鍊风粈渚€鎯岄崒娑氼洸闁割偅娲栭弰銉╂煕閺囥劌鐏犵紒鈧崘顏呭枑闊洦娲滈惌鍡涙煃瑜滈崜鐔奉潖閾忚瀚氶柟缁樺俯閸斿绱撴担鍓插剱閻㈩垽绻濆顐も偓锝庡枟閳锋垹绱掔€n偒鍎ラ柛搴$箳缁辨帗寰勬繝鍌ゆ殺闂佸憡甯楃敮鎺楋綖濠靛鏁勯柣鎰摠閵囨繃銇勯姀鈩冾棃鐎规洦浜畷姗€顢旈崟顒€鍔掗梻鍌氬€搁崐椋庣矆娓氣偓楠炴牠顢曢敂钘変罕闂佺硶鍓濋悷褔鎯岄幘缁樺€垫繛鎴烆伆閹达箑鐭楅煫鍥ㄧ⊕閻撶喖鏌¢崒姘变虎闁诡喗鍨块弻锟犲椽娴gǹ鈷嬮梺璇″枟閿曘垽骞冨▎鎴炲磯閺夌偟澧楅惈蹇涙⒒娴h棄鍚归柛鐘冲姉閹广垽宕奸妷銉ㄦ憰闂佺粯姊婚崢褔宕欓悩鐐戒簻闁规壋鏅涢悘鈺佲攽椤旇姤绀€闁宠鍨块幃鈺咁敃椤厼顥氭繝鐢靛仦閹稿宕洪崘顔肩;闁圭偓鎯屽▓浠嬫煟閹邦垰鐨洪弫鍫ユ⒑缁洘鏉归柛瀣尭椤啴濡堕崱妤冪懆闁诲孩鍑归崜娑㈠焵椤掍浇澹樻い锔诲灦閳ワ妇鎹勯妸锕€纾繛鎾村嚬閸ㄤ即宕滄潏鈺冪=闁稿本姘ㄨⅵ闂佺ǹ顑嗛幑鍥ь潖缂佹ɑ濯撮柣鐔煎亰閸ゅ绱撴担鍓插剱闁搞劌澧庣紓鎾寸鐎n亞鐫勯梺绋挎湰缁酣鎮鹃懜鐢电瘈闁靛骏绲介悡鎰版煕閺冣偓濞叉粎鍒掓繝姘ㄩ柍鍝勫€婚崢鐢电磽娴e壊鍎忔繛纭风節椤㈡挸螖娴e吀绨婚柟鍏肩暘閸ㄥ搫鐣峰畝鍕厸鐎光偓鐎n剛袦闂佺硶鏅换婵嗙暦濡ゅ懏鏅濋柍褜鍓涚槐鐐寸節閸屾粍娈鹃梺鎸庣箓閻楁粌危婵犳碍鈷戠€规洖娲ㄧ敮娑欎繆椤愩垹鏆欐い鏇秮楠炴﹢顢欓挊澶嗗亾閻戣姤鐓曢煫鍥ㄦ尰閹叉悂鏌i鐕佹疁婵﹥妞介幊锟犲Χ閸涘拑缍侀弻娑㈠棘閻愬弶鍣圭紒韬插€曢埞鎴﹀磼濠ф挸婀辩划濠氬蓟閵夛妇鍘棅顐㈡搐椤戝懘鍩€椤掍焦绀夌紒缁樺哺濮婄粯鎷呴崨闈涚秺瀵敻顢楅崟顐ゎ槱闂佽崵鍠愰崳鏉懨洪鍕幯冾熆鐠轰警鍎戦柛妯哄船閳规垿鎮欓崣澶樻!闂佸憡姊瑰ú鐔煎箖濮椻偓閸╋繝宕掗妶鍡╁晬闂備胶绮崝鏇烆嚕閸洖绐楁俊顖氱毞閸嬫挸鈻撻崹顔界亾闂佽桨绀侀…鐑藉Υ娴h倽鏃堝川椤撶媴绱叉繝鐢靛Т閿曘倝宕幎绛嬫晩濠㈣埖鍔栭埛鎺懨归敐鍛暈闁诡垰鐗撻弻锝呂旈埀顒€螞濠靛﹥顥ら梻浣筋潐椤旀牠宕板鑸靛剹闁瑰墽绮悡鏇㈡煥閺冨浂鍤欐鐐村姍閺屾稓鈧綆鍋呯亸顓熴亜椤愶絿绠炴い銏☆殕閹峰懐鎲撮崟顐紗濠电姷鏁告慨鎾儉婢舵劕围闁告洦鍋呴崕鎾绘⒒娴g瓔鍤冮柛锝庡櫍瀹曟娊鏁愭径鍫氬亾娴h倽鐔烘偘閳╁啯鏉搁梺璇插嚱缂嶅棝宕戦崨瀛樺仼闁割偅娲橀埛鎺懨归敐鍛暈闁诡垰鐗婇妵鍕槷闁稿鎹囧娲偡閺夋寧顔€闂佺懓鍤栭幏锟�/闂傚倸鍊风粈渚€骞栭位鍥敃閿曗偓閻ょ偓绻濇繝鍌涘櫤鐎规洘鐓¢弻娑㈠箛閸忓摜鍑归梺绋跨箲缁捇寮婚妶鍥╃煓閻犳亽鍔嬬划鍨箾鐎涙ê娈犻柛濠冪墱閹广垹鈹戠€n偒妫冨┑鐐村灦鐢偛锕㈤崨顓涙斀闁绘劖褰冮幃鎴︽煕閺冣偓閻熲晛顕f繝姘櫜濠㈣泛谩閳哄懏鐓忓璺虹墕閸旀潙霉閻樺眰鍋㈡慨濠冩そ瀹曨偊濡烽妷銈囨崟婵$偑鍊栧ú锕傚矗閸愵喖鏄ラ柍褜鍓氶妵鍕箳閸℃ぞ澹曟繝鐢靛Л閸嬫捇鏌涘Δ鍐ㄤ汗闁哄绉归弻鏇$疀鐎n亞浠惧銈庡亝濞叉ḿ鎹㈠┑瀣棃婵炴垶鑹鹃·鈧梺璇插绾板秴顫濋妸鈺佺劦妞ゆ帒鍊归崵鈧柣搴㈠嚬閸樺ジ鈥﹂崹顔ョ喖鎮℃惔锝囩摌婵犵數鍋涘Ο濠冪濠靛鐓曢柟瀵稿亼娴滄粓鏌熼弶鍨暢缁炬崘娉曠槐鎺楀箛椤撶噥妫冮梺鍝勬湰缁嬫捇鍩€椤掑﹦绉甸柛瀣閺呭爼顢楅崒婊咃紲闂佺ǹ鏈粙鎴澝归绛嬫闁绘劕寮堕ˉ銏⑩偓娈垮枛閻栧ジ鐛幇顓熷劅妞ゆ柨鍚嬪▍锟� bjb@jiyifa.com 婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犳澘螖閿濆懎鏆欑痪鎯ь煼閺岀喖骞嗚閹界娀鏌涘▎蹇曠闁哄本娲熷畷鐓庘攽閹邦厜褔姊洪崫鍕闁告挾鍠栭獮鍐潨閳ь剟骞冨▎鎴炲磯閺夌偟澧楅惈蹇斾繆閻愵亜鈧洜鎹㈠Δ浣侯洸妞ゆ帒鍊归~鏇㈡煙閹呮憼濠殿垱鎸抽弻娑樷攽閸曨偄濮㈠銈嗘煥椤﹂潧顫忛搹鍦<婵☆垳绮崕鎾剁磽娴d粙鍝烘繛鑼枛瀹曟椽鍩€椤掍降浜滈柟鍝勬娴滄儳鈹戦悩顐壕闂備緡鍓欑粔瀵稿閸ф鐓欓悗鐢登规牎濡炪値鍋呭ú妯兼崲濠靛顥堟繛鎴濆船閸撲即鏌f惔銏e妞わ缚鍗虫俊鐢稿礋椤栨氨顔婇梺鐟扮摠缁洪箖宕戦幘璇插強闊洤顑勫Ч妤呮⒑閸濆嫯顫﹂柛搴㈢叀瀹曟劙宕奸弴鐘插絼闂佹悶鍎崝宥囦焊閻楀牄浜滈柕澹啠鏋呴梺鍝勭焿缁蹭粙鍩為幋锕€鐐婇柍鍝勫€搁崹閬嶆煟鎼淬値娼愭繛鍙壝~婵嬪Ω閳轰胶顔嗛梺缁樓归褏绮婚悽鍛婄厵闁绘垶蓱閻擄綁鏌熼鍡欑М婵﹤顭峰畷鎺戭潩椤戣棄浜鹃柛婵勫劗閸嬫挸顫濋妷銉ヮ潎閻庤娲橀崝娆撶嵁鐎n喗鏅濋柍褜鍓熼幃鐐哄垂椤愮姳绨婚梺鍦劋閸╁﹪寮ㄦ繝姘€垫慨妯煎亾鐎氾拷