初中数学整数整除性的重要知识点

编辑: 逍遥路 关键词: 初中数学 来源: 高中学习网




  【—整数整除性的】如果我们对于整数的已经有了一定的了解,那么我们就来讲述一下相对深层次的知识要领。

  整除

  定义:设a,b是给定的数,b≠0,若存在整数c,使得a=bc,则称b整除a,记作ba,并称b是a的一个约数(因子),称a是b的一个倍数,如果不存在上述c,则称b不能整除a。

  性质

  整数整除性的一些数码特征(即常见结论)

  (1)1与0的特性:

  1是任何整数的约数,即对于任何整数a,总有1a.

  0是任何非零整数的倍数,a≠0,a为整数,则a0.

  (2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

  (3)若一个整数的数字和能被3整除,则这个整数能被3整除。

  (4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。

  (5)若一个整数的末位是0或5,则这个数能被5整除。

  (6)若一个整数能被2和3整除,则这个数能被6整除。

  (7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7 的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

  (8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。

  (9)若一个整数的数字和能被9整除,则这个整数能被9整除。

  (10)若一个整数的末位是0,则这个数能被10整除。

  (11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!

  (12)若一个整数能被3和4整除,则这个数能被12整除。

  (13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

  (14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

  (15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

  (16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除。

  (17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除。

  (18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除

  整数的整除性不仅包括了上述中的知识要领,其实也有更多的其他要领需要大家掌握。


本文来自:逍遥右脑记忆 http://www.jiyifa.com/chuzhong/145088.html

相关阅读:强化初三数学学习方法自信迎接2013中考(上)

闁绘鐗婂ḿ鍫熺珶閻楀牊顫栭柨娑欑濠€浼村棘閸パ冩暥閻庣懓婀遍弫杈ㄧ閹烘洑绮撶紓鍐╁灩閺併倝骞嬮悿顖氭闁告瑦鍨肩涵鈧柣姘煎櫙缁辨繄鎷犻妷锔界€悷娆忓€婚崑锝嗙閸涱剙鏁╅悶娑栧妺缂嶆棃鎳撻崨顔芥嫳濞存粍浜介埀顒€鍊瑰﹢鎵博濞嗗海鐭岄柟缁樺姃缁跺灚绌遍埄鍐х礀閻庢稒锚閸嬪秶绮氬ú顏咃紵闁哄牆绉存慨鐔兼晬鐏炶偐鐟濋柟鏋劜濠€渚€骞嶉埀顒勫嫉婢跺缍€闁挎稑濂旂粭澶愬箥閹稿骸顎撻柣鈺兦归崣褍鈻旈弴鐐典紣閻犳劧绲奸幑銏ゅΥ閸屾凹娲ら柛娆愬灩楠炲洭寮甸鍌滃讲闁哄牆顦扮粔鍦偓姘湰婵¤京鎮婵嬫殔闁哄鎷�/閺夆晜绻冪涵鑸垫交濠靛⿴娼愰柣銊ュ閸炲鈧湱娅㈢槐婵堟嫚瀹勬澘绲洪梺顐$窔閸嬫牗绂掗幆鏉挎 bjb@jiyifa.com 濞戞挾鍋撴慨銈夋晬鐏炶偐顏辩紓浣哥箲閻擄紕鈧湱鍎戠槐婵嬪嫉椤掑倻褰查悘蹇撴閻濇盯宕氱拠鎻掔仼闂傚嫨鍊戦埀顒婃嫹