【—矩形的公式应用】我们在试题中遇见的矩形的性质与判定试题,大多是证明图形的性质或是计算图形的面积等。
矩形的性质与判定应用
例1:已知ABCD的对角线AC和BD相交于点O,△AOB是等边三角形,AB= 4 cm.求这个平行四边形的面积。
分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形(如图个4-37),再利用勾股定理计算边长,从而得到面积为
例2:已知:如图4-38在ABCD中,M为BC中点,∠MAD=∠MDA.求证:四边形 ABCD是矩形.
分析:根据定义去证明一个角是直角,由△ABM≌DCM(SSS)即可实现。
例:3:已知:如图4-39(a),ABCD的四个内角平分线相交于点E,F,G,H.求证:EG=FH.
分析:要证的EG,FH为四边形EFGH的对角线,因此只需证明四边形EFGH为矩形,而题目可分解出基本图形:如图4-39(b),因此,可选用“三个角是直角的四边形是矩形”来证明.
例4:已知:如图 4-40,在△ABC中,∠C= 90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.
以上的全部内容就是今天老师为大家整合的矩形的性质与判定应用。
本文来自:逍遥右脑记忆 http://www.jiyifa.com/chuzhong/191750.html
相关阅读:初中数学直角坐标系知识点归纳
鐗堟潈澹版槑锛氭湰鏂囧唴瀹圭敱浜掕仈缃戠敤鎴疯嚜鍙戣础鐚紝璇ユ枃瑙傜偣浠呬唬琛ㄤ綔鑰呮湰浜恒€傛湰绔欎粎鎻愪緵淇℃伅瀛樺偍绌洪棿鏈嶅姟锛屼笉鎷ユ湁鎵€鏈夋潈锛屼笉鎵挎媴鐩稿叧娉曞緥璐d换銆傚鍙戠幇鏈珯鏈夋秹瀚屾妱琚镜鏉�/杩濇硶杩濊鐨勫唴瀹癸紝璇峰彂閫侀偖浠惰嚦 bjb@jiyifa.com 涓炬姤锛屼竴缁忔煡瀹烇紝鏈珯灏嗙珛鍒诲垹闄ゃ€�