第一章 常用逻辑用语
第3.3节 全称命题与特称命题的否定
1.命题p:存在实数,使方程x2+x+1=0有实数根,则“非p”形式的命题是( )
A.存在实数,使得方程x2+x+1=0无实根;
B.不存在实数,使得方程x2+x+1=0有实根;
C.对任意的实数,使得方程x2+x+1=0有实根;
D.至多有一个实数,使得方程x2+x+1=0有实根;
2.命题“xR,x2-x+3>0”的否定是
3.“末位数字是0或5的整数能被5整除”的
否定形式是
否命题是
4.写出下列命题的否定,并判断其真假:
(1)p:∈R,方程x2+x-=0必有实根;
(2)q:R,使得x2+x+1≤0;
5.写出下列命题的“非P”命题,并判断其真假:
(1)若>1,则方程x2-2x+=0有实数根.
(2)平方和为0的两个实数都为0.
(3)若 是锐角三角形, 则 的任何一个内角是锐角.
(4)若abc=0,则a,b,c中至少有一为0.
(5)若(x-1)(x-2)=0 ,则x≠1,x≠2.
参考答案:
1. B
2. xR,x2-x+3≤0
3.否定形式:末位数是0或5的整数,不能被5整除
否命题:末位数不是0且不是5的整数,不能被5整除
4.(1)p:∈R,方程x2+x-=0无实根;真命题。
(2)q:R,使得x2+x+1>0;真命题。
5. ⑴ 若>1,则方程x2-2x+=0无实数根,(真);
⑵平方和为0的两个实数不都为0(假);
⑶若 是锐角三角形, 则 的任何一个内角不都是锐角(假);
⑷若abc=0,则a,b,c中没有一个为0(假);
⑸若(x-1)(x-2)=0,则 或 ,(真).
本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaoer/41159.html
相关阅读:2013年高二数学上册期中调研测试题(含答案)
闂傚倷鑳剁划顖炪€冮崨瀛樺亱濠电姴鍊寸紓姘舵煕椤愩倕鏋旈柣婵嗙埣閺岋絽螖閳ь剟鎮ф繝鍥风稏闁哄稁鍘介悡銉︾箾閹寸偟鎳呮い锝呭级缁绘繈鍩€椤掍礁顕遍柡澶嬪灦椤ユ繈姊洪幖鐐插妧闁告劏鏅滃▓浠嬫⒑鐠囧弶鎹i柟铏尭閿曘垽鏌嗗鍛€柡澶婄墑閸斿酣銆呴弻銉︾厵闁绘垶蓱绾捐崵绱掗鑺ュ暗缂佽鲸鎹囧畷姗€鍩℃担杞版偅闂備浇妗ㄩ梽宥夊磹濠靛宓侀悗锝庡枟閸嬵亝銇勯弽銊ь暡妞ゆ柨娲娲川婵犲嫭鍣梺鎼炲姀閸嬫劕鈽夐悽绋跨劦妞ゆ帒瀚悡鐔告叏濡厧甯舵繛鍛懅缁辨帗娼忛妸褏鐣奸梺褰掝棑婵炩偓濠碉紕鍏橀弫鍌炴偩鐏炵ǹ浜炬い鏇楀亾闁诡喖鍢查埢搴ょ疀閹绢垰浜惧┑鐘宠壘绾惧鏌ㄥ┑鍡橆棤妞も晝鍏橀弻娑樷槈閸楃偛顫╅梺杞拌閺呯娀骞冪捄琛℃闁哄诞鍐剧€辩紓鍌氬€哥粔闈浳涢崘顔肩疇闁规崘顕у婵囥亜閺冨洤袚閻庢俺娅曠换娑氣偓娑欋缚閻霉濠娾偓缁瑩宕洪埀顒併亜閹哄棗浜鹃梺绋匡功閹虫捇鏁冮姀銈呯妞ゆ梹鍎冲畷銉モ攽閻愬弶顥滄繛瀵稿厴閹苯鐣濋崟顒傚幍缂傚倷鐒﹂敋濠殿喖鍟扮槐鎺旀崉閾忛€涚驳缂備礁鐭傛禍鍫曞春閸曨垰绀冪憸蹇曠矆閳ь剟姊虹拠鎻掝劉缂佸甯¢弫瀣⒑缁嬫鍎忕紒澶婂閸掓帒顫濋鐐存そ椤㈡棃宕崘顏勬優闂傚倷绀侀幖顐︽偋閸℃瑧鐭撻悗娑櫳戦崣蹇涙煟閺傚灝鎮戦柡鍜佸墴閹﹢鎮欑捄杞版睏闂佽崵鍠愮换鍫ュ蓟閻旂厧鍑犳い鎰╁灩婵洖鈹戦悩顐壕婵炴挻鍩冮崑鎾搭殽閻愯尙效闁糕斁鍋撳銈嗗笒鐎氼剛鈧艾顦…璺ㄦ崉娓氼垰鍓辩紓鍌氱М閸嬫捇姊绘担鐟邦嚋缂佸鍨剁缓浠嬪籍閸屾粎鐣舵繝銏e煐閸旀洜绮婚妷鈺傜厵缂佸娼¢妤併亜鎼淬垺宕岄柡宀嬬秮閸╋繝宕楅敃鈧紞濠傜暦閿濆牜妲婚梺宕囩帛濡啫顕i幘顔藉€烽柛蹇撴憸閻姊洪懡銈呅i柛鏂炲懎绶ゅ┑鍌溓圭粻鏌ユ煏韫囧鈧洝绻氶梻浣呵归張顒勫礄閻熸噴娲Χ婢跺鍘卞┑鐐叉閸旀洟鎮橀埡鍌ゆ闁绘劕寮堕崰妯尖偓娈垮枤閺佸銆佸Δ鍛<婵犲﹤鍟抽澶愭⒒娴e憡鎯堥柣妤€妫濊棟闁规鍠氶惌鎾绘煕閿旇骞愰柛瀣尭椤繈顢楁担瑙勫濠电姴鐥夐妶鍕儓闂佽鍣崳锝夈€佸Ο琛℃斀閻庯綆鍋呴悾鍫曟⒒娴e憡鎯堟い褉鍋撻梺鐟板殩閹凤拷/闂備礁鎼ˇ顐﹀疾濠婂懏宕查柛鎰典簼閸忔粓鏌ょ粙璺ㄤ粵濞存嚎鍊栫换婵嬫濞戞帞婀呭┑鐐插悑閸旀瑩寮婚敐澶娢╅柕澶堝労娴犲ジ姊洪崫銉ヤ粶妞ゆ洦鍙冮崺鈧い鎺嗗亾婵犫偓閸楃偐鏋嶉柕蹇嬪灪椤洘绻濋棃娑氬閻庢碍姘ㄩ埀顒傛嚀鐎氼厼顭垮Ο鐓庣筏婵炲樊浜濋埛鎴炪亜閹板墎纾跨紒鎰閺屾稓鈧綆鍋嗘晶顒傜磼閸屾稑娴鐐叉瀵爼骞愭惔顔兼櫗 bjb@jiyifa.com 婵犵數鍋為崹鍫曞箰妤e啫纾婚柟鎯х摠閸欏繘鏌曢崼婵愭Ч闁哄拋鍓熼幃姗€鎮欑捄杞版睏濡炪倕绻楁禍顒傛閹惧瓨濯撮柛婵勫劤椤斿姊虹紒妯绘儓缂佽鲸娲熼崺鈧い鎺嗗亾婵犫偓闁秴纾块柟瀵稿У椤洘绻濋棃娑卞剰閻庢艾顦伴妵鍕箳閹存績鍋撻弰蹇嬩汗闁哄被鍎查崐鍫曠叓閸ャ劍灏版い銉у█閺岋絽鈹戦崶鈺傚垱閻庤娲樺銊╁箯閻樿绠甸柟鐑樻煣閹綁姊婚崒姘偓鍝モ偓姘ュ姂瀹曟劙骞嬮敃鈧悞鍨亜閹烘埊鏀婚悗姘炬嫹