高二数学抛物线及其几何性质学案练习题

编辑: 逍遥路 关键词: 高二 来源: 高中学习网




§2.4.2 抛物线及其几何性质(2)

一、知识要点
1.了解抛物线过焦点弦的简单性质;
2.在对抛物线几何性质的讨论中,注意数与形的结合与转化。
二、典型例题
例1.⑴设 是抛物线 上一点, 为焦点,求 的长;
⑵已知 是过抛物线 的焦点 的直线与抛物线的两个交点,求证: 。

例2.已知定点 ,抛物线 上的动点 到焦点的距离为 ,求 的最小值,并确定取最小值时 点的坐标。


例3.设过抛物线 的焦点的一条直线和抛物线有两个交点,且两个交点的纵坐标为 ,求证: 。

例4.已知直线 为抛物线 相交于点 ,求证: 。


三、巩固练习
1.已知动圆 的圆心在抛物线 上,且与抛物线的准线相切,求证:圆 必经过定点,并求出这个定点。

2.若直线 过抛物线 的焦点,与抛物线交于 两点,且线段 中点的横坐标是2,求线段 的长。

3.已知抛物线的焦点在 轴上,点 是抛物线上的一点, 到焦点的距离是5,求 的值及抛物线的标准方程、准线方程。

四、小结

五、后作业
1.焦点为 的抛物线的标准方程是 ;
2.顶点在原点,焦点在 轴上的抛物线上有一点 到焦点的距离为5,则 = ;
3.已知抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离的取值范围是 ;
4.已知抛物线 的弦 垂直于 轴,若 ,则焦点到直线 的距离为 ;
5.斜率为1的直线经过抛物线 的焦点,与抛物线相交于 ,求线段 的长。

6.已知 是抛物线 上三点,且它们到焦点 的距离 成等差数列,求证: 。

7.直角三角形 的三个顶点都在抛物线 上,其中直角顶点 为原点, 所在直线的方程为 , 的面积为 ,求该抛物线的方程。

8. 是抛物线 上两点,且满足 ,其中 为抛物线顶点,
求证:⑴ 两点的纵坐标乘积为定值;⑵直线 恒过一定点。

订正栏:




本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaoer/44229.html

相关阅读:简单复合函数的导数学案练习题

闁绘鐗婂ḿ鍫熺珶閻楀牊顫栭柨娑欑濠€浼村棘閸パ冩暥閻庣懓婀遍弫杈ㄧ閹烘洑绮撶紓鍐╁灩閺併倝骞嬮悿顖氭闁告瑦鍨肩涵鈧柣姘煎櫙缁辨繄鎷犻妷锔界€悷娆忓€婚崑锝嗙閸涱剙鏁╅悶娑栧妺缂嶆棃鎳撻崨顔芥嫳濞存粍浜介埀顒€鍊瑰﹢鎵博濞嗗海鐭岄柟缁樺姃缁跺灚绌遍埄鍐х礀閻庢稒锚閸嬪秶绮氬ú顏咃紵闁哄牆绉存慨鐔兼晬鐏炶偐鐟濋柟鏋劜濠€渚€骞嶉埀顒勫嫉婢跺缍€闁挎稑濂旂粭澶愬箥閹稿骸顎撻柣鈺兦归崣褍鈻旈弴鐐典紣閻犳劧绲奸幑銏ゅΥ閸屾凹娲ら柛娆愬灩楠炲洭寮甸鍌滃讲闁哄牆顦扮粔鍦偓姘湰婵¤京鎮婵嬫殔闁哄鎷�/閺夆晜绻冪涵鑸垫交濠靛⿴娼愰柣銊ュ閸炲鈧湱娅㈢槐婵堟嫚瀹勬澘绲洪梺顐$窔閸嬫牗绂掗幆鏉挎 bjb@jiyifa.com 濞戞挾鍋撴慨銈夋晬鐏炶偐顏辩紓浣哥箲閻擄紕鈧湱鍎戠槐婵嬪嫉椤掑倻褰查悘蹇撴閻濇盯宕氱拠鎻掔仼闂傚嫨鍊戦埀顒婃嫹