平面向量数量积的坐标表示教案、学案

编辑: 逍遥路 关键词: 高二 来源: 高中学习网



泗县三中教案、学案:平面向量数量积的坐标表示
年级高一学科数学课题平面向量数量积的坐标表示
授课时间
学习重点在坐标形式下,掌握平面向量数量积的运算公式及其变式(夹角公式)
学习难点在坐标形式下,掌握平面向量数量积的运算公式及其变式及应用
学 习 目 标
1. 在坐标形式下,掌握平面向量数量积的运算公式及其变式(夹角公式);
2. 理解模长公式与解析几何中两点之间距离公式的一致性.

教 学 过 程
一 自 主 学 习
⑴向量数量积的交换律:        .    
⑵ =    =    .
⑶向量的数量积的分配律:
        .         
⑷ =         .        .
5已知两个非零向量 .

结论:⑴若 ,则 ,或 .

⑵若 , ,
则 .

⑶若 ,
则 .

⑷设 是 与 的夹角,



二 师 生 互动
例1已知 , , ,试判断 的形状,并给出证明.


变式:已知四点 , , , 求证:四边形 是直角梯形.

例2设 , ,求 及 之间的夹角余弦值.


练1. 已知 , ,若 ,试求 的值.



三 巩 固 练 习
1. 已知 , ,则 等于( )
A. B. C. D.
2. 若 , ,则 与 夹角的余弦为( )
A. B. C. D.
3. 若 , ,则 等于( )
A. B. C. D.
4. , ,则 = .
5. 已知向量 , ,若 ,则 .
6. 下列各组向量中,可以作为基底的是( )
A.
B.
C.
D.
7. 若平面向量 与向量 的夹角是 ,且 ,则 ( )
A. B. C. D.
8. 已知向量 , , ,若 ,则 与 的夹角为( )
A. B. C. D.
9.已知向量 , ,若 与 垂直,则实数 .
10. 已知向量 , ,若 不超过 ,则 的取值范围是 .

11已知向量 ,求
⑴求 与 的夹角 ;
⑵若向量 与 垂直,求 的值.




四 课 后 反 思

五 课 后 巩 固 练 习
1. 已知 , , ,且 , ,求⑴ ;⑵ 、 的夹角.




2. 已知点 和 ,问能否在 轴上找到一点 ,使 ,若不能,说明理由;若能,求 点坐标.


本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaoer/61617.html

相关阅读:空间向量基本定理学案练习题

闁绘鐗婂ḿ鍫熺珶閻楀牊顫栭柨娑欑濠€浼村棘閸パ冩暥閻庣懓婀遍弫杈ㄧ閹烘洑绮撶紓鍐╁灩閺併倝骞嬮悿顖氭闁告瑦鍨肩涵鈧柣姘煎櫙缁辨繄鎷犻妷锔界€悷娆忓€婚崑锝嗙閸涱剙鏁╅悶娑栧妺缂嶆棃鎳撻崨顔芥嫳濞存粍浜介埀顒€鍊瑰﹢鎵博濞嗗海鐭岄柟缁樺姃缁跺灚绌遍埄鍐х礀閻庢稒锚閸嬪秶绮氬ú顏咃紵闁哄牆绉存慨鐔兼晬鐏炶偐鐟濋柟鏋劜濠€渚€骞嶉埀顒勫嫉婢跺缍€闁挎稑濂旂粭澶愬箥閹稿骸顎撻柣鈺兦归崣褍鈻旈弴鐐典紣閻犳劧绲奸幑銏ゅΥ閸屾凹娲ら柛娆愬灩楠炲洭寮甸鍌滃讲闁哄牆顦扮粔鍦偓姘湰婵¤京鎮婵嬫殔闁哄鎷�/閺夆晜绻冪涵鑸垫交濠靛⿴娼愰柣銊ュ閸炲鈧湱娅㈢槐婵堟嫚瀹勬澘绲洪梺顐$窔閸嬫牗绂掗幆鏉挎 bjb@jiyifa.com 濞戞挾鍋撴慨銈夋晬鐏炶偐顏辩紓浣哥箲閻擄紕鈧湱鍎戠槐婵嬪嫉椤掑倻褰查悘蹇撴閻濇盯宕氱拠鎻掔仼闂傚嫨鍊戦埀顒婃嫹