4.1.1 定积分的背景——面积和路程问题

编辑: 逍遥路 关键词: 高二 来源: 高中学习网


定积分的背景——面积和路程问题
过程:
一、问题引入
师:1.求下图中阴影部分的面积:

师:对于哪些图形的面积,大家会求呢?(学生回忆,回答)
师:对于 , , , 围成的图形(曲边三角形)的面积如何来求呢?(一问激起千层浪,开门见山,让学生明确本节课的所要学习的内容,对于学生未知的东西,学生往往比较好奇,激发他们的求知欲)今天我们一起来探究这种曲边图形的面积的求法。
二、学生活动与意义建构
1、让学生自己探求,讨论(3—4分钟)
2、让学生说出自己的想法
希望学生说出以 的面积近似代替曲边三角形的面积,但误差很大,如何减小误差呢?希望学生讨论得出将曲边三角形进行分割,形成若干个曲边梯形。(在讨论的过程中渗透分割的思想)
师:如何计算每个曲边梯形的面积呢?(通过讨论希望学生能出以下三种方案,在讨论的过程中,让学生想到以直代曲,给学生创新的机会)


方案一 方案二 方案三

方案一:用一个矩形的面积近似代替曲边梯形的面积,梯形分割的越多,三角形的面积越小,小矩形的面积就可以近视代替曲边梯形的面积。
方案二:用一个大矩形的面积来近似代替曲边梯形的面积,梯形分割的越多,三角形的面积越小,大矩形的面积来近似代替曲边梯形的面积。
方案三:以梯形的面积来近似代替曲边梯形的面积。
(对于其中的任意一个曲边梯形,我们可以用“直边”来代替“曲边”(即在很小的范围内以直代曲),这三种方案是本节课内容的核心,故多花点时间引导学生探求,讨论得出,让学生体会“以曲代直”的思想,从近似中认识精确,给学生探求的机会)
师:这样,我们就可以计算出任意一个小曲边梯形的面积的近似值,从而可以计算出整个曲边三角形面积的近似值,(求和),并且分割越细,面积的近似值就越精确,当分割无限变细时,这个近似值就无限逼近所求的曲边三角形的面积。如何求这个曲边三角形的面积,以方案一为例:
⑴分割细化
将区间 等分成 个小区间 , ,…, ,…, ,每个区间的长度为 (学生回答),过各个区间端点作 轴的垂线,从而得到 个小曲边梯形,它们的面积分别记作 , ,…, ,…, 。
⑵以直代曲
对区间 上的小曲边梯形,以区间左端点 对应的函数值 为一边的长,以 为邻边的长的小矩形的面积近似代替小曲边梯形的面积。即
(当分割很细时,在 上任一点的函数值作为矩形的一边长都可以,常取左右端点或中点,这样为以后定积分的定义埋下了伏笔,为学生的解题提供了方法)
⑶作和
因为每个小矩形的面积是相应的小曲边梯形面积的近似值,所以 个小矩形面积之和就是所求曲边三角形面积 的近似值:

(复习 符号的运用)


⑷逼近
当分割无限变细时,即 无限趋近于 ( 趋向于 )

当 趋向 时, 无限趋近于 , 无限趋近于 ,故上式的结果无限趋近于 , ,即所求曲边三角形面积是 。(在逼近的过程中,难点是求 在此应给学生一些时间探求自然数的平方和,
最好在讲数列知识时补充进去。新教材有很多知识点前后顺序编排的有所不妥,有好多知识应该先有伏笔,而不是要用到什么就补充什么,在研究解析几何中直线部分时,这个问题也有所体现)
3、分成两组,分别以方案二、方案三按上述四个步骤重新计算曲边三角形的面积,并将操作过程和计算结果与方案一进行比较。
(设计的目的是培养学生的合作交流的能力,优化解题方案)
师:请用流程图表示求曲边三角形面积的过程

4、反思
在求曲边梯形面积过程中,你认为最让你感到困难的是什么?(如何分割,求和逼近是两大难点)
(在新课程的课堂过程中,经常性地问学生一些这样的问题,可以让学生对自己的学习过程起到一个自查作用,查漏补缺,对培养学生学习数学的自查意识是一个很好的途径,也可以活跃课堂气氛)
三、数学应用
1、典型例题
师:在方案一中,和式 (*)表示曲边梯形的面积的近似值,这一和式不仅是有直观的几何意义,还有丰富的实际背景。
例1:火箭发射后 的速度为 (单位 ),假定 ,对函数 按(*)式所作的和具有怎样的意义?
解:将区间 等分成 个小区间,每个小区间的长度为 ,在每个小区间上取一点,依次为 ,虽然火箭的速度不是常数,但在一个小区间内其变化很小,可以用 来代替火箭在第一个小区间上的速度,这样,
火箭在第一个时段内运行的路程
同理 火箭在第二个时段内运行的路程
从而
火箭在 内运行的路程总和
这就是函数 在时间区间 上按(*)式所作的和的实际背景。
(由于学生初次遇到这类问题,语言表达比较困难,故教师在教学过程中最好采用对话式教学,边说边写,规范板书)
例2:如图,有两个点电荷 、 ,电量分别为 、 ,固定电荷 将电荷 从距 为 处移到距 为 处,求库仑力对电荷 所做的功。

先分析,再让学生尝试书写,然后投影解题过程。
(设计两道例题的目的,一是培养学生的文字表达能力,二是让学生体会数学在物理上的应用,也为后面的定积分的物理意义变力所做的功,变速运动的位移埋下伏笔)
学生练习:课本P46练习
四、回顾反思
知识点:⑴求曲边梯形面积的四个步骤;⑵数学知识在物理上的应用。
反思消化:⑴对今天学习的内容,你觉得有什么困难?
⑵在以前的学习过程中,有哪些地方用到了与今天类似的方法?
(希望学生能回忆起初中圆的周长、高中球的表面积以及线性回归方程等类似的内容)
五、布置作业:
1、探究:有没有不同于方案一、方案二、方案三的以直代曲的方案?
2、课课练P41 1. 2
本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaoer/72172.html

相关阅读:定积分

闂備胶绮〃鍛存偋婵犲倴缂氶柛顐ゅ枔閻濆爼鏌eΔ鈧悧濠囷綖閺嶎厽鐓ユ繛鎴炵懅椤e弶绻濋埀顒佸閺夋垶顥濋梺鎼炲劀閸愨晜娈介梺璇叉捣閹虫挸锕㈤柆宥呮瀬閺夊牄鍔庨々鏌ユ煙閻戞ɑ纾荤紒顔芥尵缁辨捇宕橀埡浣轰患闂佽桨闄嶉崐婵嬬嵁鐎n喗鍋い鏍ㄧ椤斿洭姊洪崨濠勬噭闁搞劏鍋愬☉鐢稿焵椤掑嫭鐓熸慨妯煎帶濞呮瑧绱掓潏銊х畼闁归濞€婵$兘鏁傞悾灞稿亾椤曗偓閹嘲鈻庤箛鎾亾婵犳艾纾婚柨婵嗘椤╃兘鏌涘☉鍗炲闁轰讲鏅犻幃璺衡槈閺嵮冾瀱缂傚倸绉靛Λ鍐箠閹捐宸濇い鏃囧Г鐎氳櫕绻涚€涙ḿ鐭嬪ù婊€绮欓崺鈧い鎺嗗亾闁稿﹦鎳撻敃銏ゅ箥椤旀儳宕ュ┑鐐叉濞寸兘鎯屽畝鍕厵缂備焦锚婵啰绱掔捄铏逛粵缂佸矂浜堕崺鍕礃瑜忕粈鈧梺璇插缁嬫帡鏁嬮梺绋款儏缁夊墎鍒掑顑炴椽顢旈崪鍐惞闂備礁鎼悧鍡欑矓鐎涙ɑ鍙忛柣鏂垮悑閺咁剟鎮橀悙璺轰汗闁荤喐绻堥弻鐔煎几椤愩垹濮曞┑鐘亾濞撴埃鍋撴鐐茬Ч閸┾偓妞ゆ帒瀚€氬顭跨捄渚剱缂傚秮鍋撻梻浣瑰缁嬫垶绺介弮鍌滅當濠㈣埖鍔曠粻銉╂煙缁嬪潡顎楁い搴㈡崌閺岋綁鍩¢崗锕€缍婂畷锝堫槻闁崇粯妫冨鎾倷閸忓摜鐭楅梺鑽ゅУ閸斞呭緤婵傜ǹ绠查柕蹇嬪€曡繚闂佺ǹ鏈崙鐟懊洪妶澶嬬厱婵炲棙鍔曢悘鈺傤殽閻愬弶鍠樼€殿喚鏁婚、妤呭磼濠婂啳顔夐梻浣告惈閻楀棝藝閹殿喚鐭撻柛锔诲幐閸嬫挸顫濋浣规嫳婵犲痉銈勫惈闁诡噮鍣i、妯衡攽鐎n偅鐣堕梻浣告惈椤р偓闁瑰嚖鎷�/闂佸搫顦弲婊呮崲閸愵亝鍏滈柤绋跨仛娴溿倖绻濋棃娑掔湅婵炲吋鍔欓弻锝夊Ω閵夈儺浠奸梺鍝ュ仜椤曨參鍩€椤掆偓濠€鍗炩枍閵忋垺顫曟繝闈涚墛鐎氭氨鈧懓瀚妯煎緤濞差亝鈷戞い鎰剁磿缁愭棃鏌涚€n偆澧紒鍌涘浮楠炲棝寮堕幐搴晭 bjb@jiyifa.com 濠电偞鍨堕幐楣冨磻閹惧瓨鍙忛柕鍫濐槹閺咁剟鎮橀悙璺轰汗妞ゅ繗浜槐鎾存媴閸濄儳顔夐梺缁樻惈缁辨洟鍩€椤掆偓濠€閬嶅磿閹寸姵顫曟繝闈涱儏鐎氬銇勯幒鎴濃偓鏄忋亹閺屻儲鍊堕煫鍥ㄦ尰椤ョ娀鏌e┑鍥╂创鐎规洘姘ㄩ幏鐘诲箵閹烘柧鎮i梻鍌氬€哥€氥劑宕愰幋锕€鐒垫い鎺戯攻鐎氾拷