1.甲、乙两个围棋队各5名队员按事先排好的顺序进行擂台赛,双方1号队员选赛,负者被淘汰,然后负方的2号队员再与对方的获胜队员再赛,负者又被淘汰,一直这样进行下去,直到有一方队员全被淘汰时,另一方获胜。假设每个队员实力相当,则甲方有4名队员被淘汰且最后占胜乙方的概率是____________。
2.某种比赛的规则是5局3胜制,甲、乙两人在比赛中获胜的概率分别是。
(1)若有3局中乙以2:1领先,求乙获胜的概率;
(2)若胜一局得2分,负一局得分,求甲得分ξ的数学期望。
难点 2以概率与统计为背景的数列题
1.从原点出发的某质点M,按向量a=(0,1)移动的概率为,按向量b=(0,2)移动的概率为,设M到达点(0,n)的概率为Pn,求Pn
质点能达(0,n)的概率为
2.一个口袋中放有若干个球,每一球上标有1至n中某一个整数,设标有数k的球有k个,现从中任取一球。ξ为取的球上所标数字,求ξ的期望与方差。
难点 3 利用期望与方差解决实际问题
1.四位母亲带领自己的孩子参加电视台“我爱妈妈”综艺节目,其中有一环节,先把四位小孩的眼睛蒙上,然后四位母亲分开站,而且站?不许动、不许出声,最后让蒙上眼睛的小朋友找自己的妈妈,一位母亲的身边只许站一位小朋友,站对一对后亮起两盏红灯,站错不亮灯,求所亮灯数的期望值。
2.某商场根据天气预报来决定节目节日在商场内还有在商场外开展促销活动,统计资料表明,每一年五一节商场内的促销活动可获得经济效益2.5万元,商场外的促销活动如果不遇害到有雨天可获得经济效益12万元,如果促销活动遇到雨天则带来经济损失5万元,4月30日气象台报五一节当地有雨的概率是40%,问商场应该采用哪种促销方式?
【易错点点睛】
易错点 1 求某事件的概率
1.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ?( ?)
个三位数;(3)三个数字都相同,有(3,3,3),共1个三位数。所求概率为。选D。
2.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格。
(1)分别求甲、乙两人考试合格的概率;
(2)求甲、乙两人至少有一人考试合格的概率。
3.某人有5把钥匙,其中有1把可以打开房门,但忘记了开门的是哪一把,于是他逐把不重复地试开,那么恰好第三次打开房门的概率是____________.
(方法三)只考虑第3把钥匙,概率P=
4.甲、乙两人各射击一次,击中目标的概率分别是。假设两人射击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响。
(1)求甲射击4次,至少1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;
(3)假设某人连续2次未击中目标,则停止射击。问:乙恰好射击5次后,被中止射击的概率是多少?
【举一反三】
1掷三枚骰子,求所得点数中最大点数是最小点数两倍的概率是 ?( ?)
2 、同时抛掷3枚均匀硬币16次,则这三枚硬币至少出现一次两个正面一个反而的概率__________(用式子作答)。
3 、设棋子在正四面体ABCD的表面从一个顶点向另外三个顶点移动是等可能的,现抛掷骰子根据其点数决定棋子是否移动,若抛出的点数是奇数,则棋子不动;若抛出的点数是偶数,棋子移动到另一顶点,若棋子的初始位置为A,则:
(1)投掷2次骰子,棋子才到达顶点BA的概率;
(2)投掷次骰子,棋子恰巧在顶点B的概率是多少?
【特别提醒】
对于等可能性事件的概率,一定要注意分子分母算法要一致,如分母考虑了顺序,则分子也应考虑顺序等;将一个较复杂的事件进行分解时,一定要注意各事件之间是否互斥,还要注意有无考虑全面;有时正面情况较多,应考虑利用公式P(A)=1-P();对于A、B是否独立,应充分利用相互独立的定义,只有A、B相互独立,才能利用公式P(A?B)=P(A)?P(B),还应注意独立与互斥的区别,不要两者混淆。
易错点 2离散型随机变量的分布列、期望与方差
1.盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个。第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同)。记第一次与第二次取得球的标号之和为ξ。
(1)求随机变量ξ的分布列;
(2)求随机变量ξ的期望。
2.某同学参加科普知识竞赛,需回答三个问题竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响。
(1)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望;
(2)求这名同学总得分不为负分(即ξ≥0)的概率。
(2)这名同学总得分不为负分的概率为P(ξ≥0)=0.384+0.512=0.986.
3.某电器商经过多年经验发现本店每个月售出的电冰箱的台数ξ是一个随机变量,它的分布列如下:
ξ123…12P…设每售出一台电冰箱,电器商获利300元,如销售不出而囤积于仓库,则每台每月需花保养费100元,问电器商月初购进多少台电冰箱才能使自己平均收益最大?
4.一接等中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率为0.5,电话C、D战线的概率为0.4,各部电话是否占线相互之间没有影响,假设该时刻有ξ部电话占线,试求随机变量ξ的概率分布和它的期望。
5.某城市有甲、乙、丙3个旅游景点,一位客人浏览这三个景点的概率分别为0.4,0.5,0.6,且客人是否浏览哪个景点互不影响,设ξ表示客人离开该城市时浏览的景点数与没有浏览的景点数之差的绝对值。
(1)求ξ的分布及数学期望;
(2)记“函数f(x)=x2-3ξx+1,在区间[2,+∞]上单调递增”为事件A,求事件A的概率。
【举一反三】
1.某商店搞促销活动规则如下:木箱内放有5枚白棋子和5枚黑棋子,顾客从中一次性任意取出5枚棋子,如果取出的5枚棋子中恰有5枚白棋子或4枚白棋子或3枚白棋子,则有奖品,奖励办法如下表:
取出的棋子奖品5枚白棋子价值50元的商品4枚白棋子价值30元的商品3枚白棋子价值10元的商品如果取出的不是上述三种情况,则顾客需用50元购买商品。
(1)求获得价值50元的商品的概率;
(2)求获得奖品的概率;
(3)如果顾客所买商品成本价为10元,假设有10000人次参加这项促销活动,同商家可以获得的利润大约是多少(精确到元)。
2.A、B两地之间有6条网线并联,它们能通过的信息量分别为:1,1,2,2,3, 3,现从中任取三条网线,设可通过的信息量为x,当可通过的信息量x≥6时,则保证信息畅通。
(1)求线路信息畅通的概率;
(2)求任取三条网线所通过信息量的数学期望。
3.袋中放2个白球和3个黑球,每次从中取一个球,直到取到白球为止,若每次取出的球不再放回去,求取球次数ξ的概率分布及数学期望。
【特别提醒】
离散型随机变量的分布列,期望与方差是概率统计的重点内容,对离散型随机变量及分布列,期望与方差的概念的关键。求离散型随机变量的分布列的步骤是:(1)根据问题实际找出随机变量ξ的所有可能值xi;(2)求出各个取值的概率P(ξ=xi)=Pi;(3)画表填入相应数字,其中随机变量ξ的取值很容易出现错误,解题时应认真推敲,对于概率通常利用所有概率之和是否等于1来进行检验。期望与方差的计算公式尤其是方差的计算公式较为复杂,要在理解的基础上进行记忆。
易错点 3统计
1.样本总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10,现用系统抽样方法抽取一个容量为10的样本,规定如果在第一组抽取的号码为m那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=6,则在第7组中抽取的号码是____________.
2.某校为了了解学生的课外阅读情况,随机调查了50名学生得到他们在某一天各自课外阅读所用时间的数据,结果用图13-1所示的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ? ( ?)A.0.6 ? ? ? ? B.0.9
C.1.0 ? ? ? ? ?D.1.5
3.若随机变量ξ、η都服从正态分布,并且ξ~N(3,2),η=,则随机变量η的期望是_________。
4.设随机变量服从正态分布N(0,1),记φ(x)=P(ξ0)
D.P(|ξ|>a)=1-φ(a)(a>0)
【举一反三】
1 某厂生产的零件外径ξ~N(10,0.04),今从该厂上午生产的零件中各取一件,测得外径分别为9.9cm,9.3cm,则可认为 ?( ?)
A.上午生产情况正常,下午生产情况异常
B.上午生产情况异常,下午生产情况正常
C.上、下午生产情况均正常
D.上、下午生产情况均不正常
2 设随机变量ξ~N(μ,σ2),且P(ξ≤c)=P(ξ>Ac),则c等于
A.0 ? ? ? ?B.6
C.-μ ? ? ?D.μ
3 从某社区家庭中按分层抽样的方法,抽取100户高、中、低收入家庭调查社会购买力的某项指标,若抽出的家庭中有56户中等收入户和19户低收入户,已知该社区高收入家庭有125户,则该社区家庭总户数为__________.
【特别提醒】
对抽样方法,总体分布的估计,正态分布及线性回归近几年高考要求都不高,有的尚未考查,但作为新的知识点,高考也不会完全放弃,所以平时学习应以基础知识为主,重点学习抽样方法,正态分布的基础知识。抽样方法主要是概念的理解,正态分布主要是图像的性质。
1.若n的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为( )
A. ?B. ?C.- ?D.
2.在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一点D,使△ABD为钝角三角形的概率为( )
A. ?B. ?C. ?D.
3.如图4是统计高三年级2 000名同学某次数学考试成绩的程序框图,S代表分数,若输出的结果是560,则这次考试数学分数不低于90分的同学的概率是( )
A.0.28 ?B.0.38 ?C.0.72 ?D.0.62
4.签盒中有编号为1,2,3,4,5,6的六支签,从中任意取3支,设X为这3支签的号码之中最大的一个,则X的数学期望为( )
A.5 ?B.5.25 ?C.5.8 ?D.4.6
5.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )
A.这种抽样方法是一种分层抽样
B.这种抽样方法是一种系统抽样
C.这五名男生成绩的方差大于这五名女生成绩的方差
D.该班男生成绩的平均数小于该班女生成绩的平均数
.已知x,y满足(x∈Z,y∈Z),每一对整数(x,y)对应平面上一个点,则过这些点中的其中3个点可作不同的圆的个数为( )
A.45 ?B.36 ?C.30 ?D.27
.某校开展“爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如图5所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是________.
8.从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=________.
.某工厂经过技术改造后,降低了能源消耗,经统计该厂某种产品的产量x(单位:吨)与相应的生产能耗y(单位:吨)有如下几组样本数据:
x3456y2.5344.5根据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得回归直线的斜率为0.7.已知该产品的年产量为10吨,则该工厂每年大约消耗的汽油为________吨.
.执行如图7的程序框图,若输入的ε的值为0.25,则输出的n的值为________.
11.某人在如图8所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
图8
X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.
.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.
(1)求X的分布列;
(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.
13.某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计(满分150分),其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:
男生
女生
图6
(1)根据以上两个直方图完成下面的2×2列联表:
成绩
性别 优秀不优秀总计男生女生总计(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?
(注:
k02.0722.7063.8415.0246.6357.87910.828P(K2≥k0)0.150.100.050.0250.0100.0050.001K2=,其中n=a+b+c+d.)
(3)若从成绩在[130,140]的学生中任取2人,求取到的2人中至少有1名女生的概率.
14.近年来,我国的高铁技术发展迅速,铁道部门计划在A、B两城之间开通高速列车,假设在试运行期间,每天8:00-9:00,9:00-10:00两个时段内各发一趟列车由A城到B城(两车发生情况互不影响),A城发车时间及其概率如下表所示:
发生时间8:108:308:509:109:309:50概率若甲、乙两位旅客打算从A城到B城,假设他们到达A城火车站侯车的时间分别是周六8:00和周日8: 20.(只考虑候车时间,不考虑其他因素)
(1)设乙侯车所需时间为随机变量X,求X的分布列和数学期望;
(2)求甲、乙二人候车时间相等的概率.
15.从正方体的各个表面上的12条面对角线中任取2条,设ξ为2条面对角线所成的角(用弧度制表示),如当2条面对角线垂直时,ξ=。
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).
.空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,代表空气污染越严重.PM2.5的浓度与空气质量类别的关系如下表所示:
PM2.5日均浓度0~3535~7575~115115~150150~250>250空气质量类别优良轻度污染中度污染重度污染严重污染从甲城市9月份的30天中随机抽取15天的PM2.5日均浓度指数数据茎叶图如图所示.
(1)试估计甲城市在9月份30天的空气质量类别为优或良的天数;
(2)在甲城市这15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.
.甲、乙两支球队进行总决赛,比赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛结束.因两队实力相当,每场比赛两队获胜的可能性均为。据以往资料统计,第一场比赛可获得门票收入40万元,以后每场比赛门票收入比上一场增加10万元.
(1)求总决赛中获得门票总收入恰好为300万元的概率;
(2)设总决赛中获得门票总收入为X,求X的均值E(X).
18.自驾游从A地到B地有甲、乙两条线路,甲线路是A-C-D-B,乙线路是A-E-F-G-H-B,其中CD段、EF段、GH段都是易堵车路段.假设这三条路段堵车与否相互独立.这三条路段的堵车概率及平均堵车时间如表1所示.经调查发现,堵车概率x在上变化,y在上变化.在不堵车的情况下,走甲线路需汽油费500元,走乙线路需汽油费545元.而每堵车1小时,需多花汽油费20元.路政局为了估计CD段平均堵车时间,调查了100名走甲路线的司机,得到表2数据.
CD段EF段GH段堵车概率xy平均堵车时间(单位:小时)a21
堵车时间(单位:小时)频数[0,1]8(1,2]6(2,3][38(3,4]24(4,5]24
(1)求CD段平均堵车时间a的值;
(2)若只考虑所花汽油费期望值的大小,为了节约,求选择走甲线路的概率.
本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaokao/1013887.html
相关阅读:八问新高考:高考3+3意味着什么?选考科目如何计入高考总分?
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛鎾茬閸ㄦ繃銇勯弽顐杭闁逞屽墮閸熸潙鐣烽妸褉鍋撳☉娅亝绂嶆潏銊х瘈闁汇垽娼у瓭闂佺ǹ锕ら顓犳閹炬剚娼╅柤鍝ユ暩閸樺崬顪冮妶鍡楀闁稿﹥娲熷鎼佸籍閸喓鍘藉┑鐘绘涧濡盯宕洪敐澶嬬厸鐎光偓鐎n剙鍩岄柧缁樼墵閺屽秷顧侀柛鎾跺枛楠炲啳顦崇紒缁樼箞瀹曡埖顦版惔锝傛(闂傚倷绀侀幖顐ょ矙娓氣偓瀹曘垺绂掔€n偄浜楅梺闈涱檧婵″洨绮绘ィ鍐╃厵閻庣數枪娴犙囨煙閸愬弶鍣洪柕鍥у閺佹劙宕ㄩ鐘荤崜缂傚倷鑳剁划顖滄崲閸儱鏄ラ柍褜鍓氶妵鍕箳瀹ュ浂妲銈嗘礋娴滃爼寮婚埄鍐ㄧ窞閻庯綆浜炴禒绋款渻閵堝啫鍔滅紒璇茬墕椤繐煤椤忓嫮顔愰梺缁樺姈瑜板啯淇婅濮婃椽宕ㄦ繝鍌氼潊闂佸搫鎳忕划宀勫煝閹惧顩烽悗锝庡亐閹锋椽鏌i悩鍙夋悙鐎殿喖鐖奸獮鎴︽晲婢跺鍘甸梺鎯ф禋閸嬪懐浜搁銏$叆闁哄洦锚閻忔煡鏌$仦鑺ヮ棞妞ゆ挸銈稿畷銊╊敊闁款垰浜炬い鎺戝閻撴稑顭跨捄鐚村姛濠⒀勫灴閺屾盯寮崸妤€寮伴梺闈涙閹虫ê顕f繝姘ㄩ柨鏃€鍎抽獮宥夋⒒娴h櫣甯涢柛銊﹀劶閹筋偆绱掗悙顒€绀冪€规洜鏁稿Σ鎰板箳濡ゅ﹥鏅╅梺鍏间航閸庨亶寮冲Δ鍐=濞达絼绮欓崫娲煙閻熺増鎼愰柣锝呭槻椤粓鍩€椤掑嫬鏄ラ柍鈺佸暞婵挳寮堕悙闈涱暭闁稿鎳樺濠氬磼濞嗘劗銈板┑鈩冦仠閸旀垵顫忛挊澶樺悑濠㈣泛锕﹂敍娆忊攽閻樼粯娑фい鎴濇搐閻e灚绗熼埀顒勫箖濡ゅ懏鏅查幖绮瑰墲閻忓秹姊虹粙娆惧剾濞存粍绻堟俊鐢稿礋椤栨艾鍞ㄩ梺闈浤涚仦鐐啇濠碉紕鍋戦崐鏍蓟閵娿儍娲敇閻戝棙缍庡┑鐐叉▕娴滄粌顔忓┑鍡忔斀闁绘ɑ褰冮顏堟煕閿濆骸寮慨濠冩そ楠炴牠鎮欓幓鎺濇綂闂備胶枪椤戝棝宕濋弴銏犵叀濠㈣埖鍔栭崑銊х磼鐎n厽纭堕柛鏃撶畱椤啴濡堕崱妤冪懆闁诲孩鍑归崣鍐箖閿熺姵鍋勯柛娑橈工瀵灝鈹戦埥鍡楃仯闁告鍛殰闁煎摜鏁哥粻楣冩煕濞戝崬鏋ら柟鍐叉噽缁辨帗娼忛妸銉х懖濠电偟鍘х换妯讳繆濮濆矈妲鹃梺浼欑到閵堢ǹ顫忔ウ瑁や汗闁圭儤绻冮ˉ鏍ㄧ節閻㈤潧浜归柛瀣尰缁绘繄鍠婃径宀€锛熼梺绋跨箲閿曘垹顕i锕€纾奸柣鎰綑娴犲ジ鏌h箛鏇炰户閺嬵亜霉濠婂懎浜鹃柕鍥у瀵潙螖閳ь剚绂嶆ィ鍐┾拺閻犲洠鈧櫕鐏堥梺鎼炲灪閻擄繝宕洪姀鈩冨劅闁靛牆娲ㄩ弶鎼佹⒑閸︻叀妾搁柛銊у缁傚秹骞嗚閺€浠嬫煟濡櫣鏋冨瑙勧缚閻ヮ亪骞嗚閻撳ジ鏌$仦璇插闁宠鍨垮畷鍗烆潨閸℃﹫楠忓┑锛勫亼閸婃劙寮插┑瀣婵せ鍋撶€殿喛顕ч埥澶娢熼柨瀣垫綌闂備礁鎲¢〃鍫ュ磻濞戭澁缍栭柍鍝勬噺閳锋垿寮堕悙鏉戭€滄い鏂款樀閺岋繝宕ㄩ姘f瀰濡ょ姷鍋涢崯浼村箲閸曨厽鍋橀柍鈺佸枤濞兼棃姊绘担鍛婃儓閻犲洨鍋ゅ畷姗€宕滆閸嬫挻娼忛埡鍐紳闂佺ǹ鏈懝楣冨焵椤掆偓閹芥粎鍒掗弮鍫燁棃婵炵娅曢惄顖氱暦濮椻偓椤㈡瑩鎳栭埡鍐╃€梻鍌欐祰椤鐣峰鈧、姘愁槻妞ゆ柨绻愰埞鎴﹀炊閵夈倗鐩庨梻浣告惈閸燁偄煤閵堝牜鏆遍梻浣筋嚙鐎涒晜绌遍崫鍕ㄦ瀺闁哄洨濮靛畷鍙夌箾閹寸偛鐒归柛瀣尭閳藉鈻庣€n剛绐楅梻浣规た閸樺ジ顢栭崨瀛樼畳婵犵數濮磋墝闁稿鎸剧槐鎺楊敊閻e本鍣伴悗瑙勬礃濡炰粙宕洪埀顒併亜閹哄秹妾峰ù婊勭矒閺岀喖宕崟顒夋婵炲瓨绮撶粻鏍ь潖閾忓湱鐭欓柛鏍も偓鍐差潬闂備胶顢婂▍鏇㈠箲閸ヮ剙鏋侀柛鎰靛枛椤懘鏌曢崼婵囧櫧妞ゆ挾鍘ч—鍐Χ閸℃ǚ鎷归梺绋块閸熷潡鎮鹃悜钘壩ㄩ柕澶堝灪閺傗偓闂備胶绮崝鏇烆嚕閸泙澶娾堪閸曨厾顔曢柣搴f暩鏋柛妯绘尦閺岀喖顢涘鍐差伃闂佷紮绲剧换鍫濈暦閻旂⒈鏁嗛柛灞捐壘缁犮儳绱撻崒姘偓鎼佸磹閻戣姤鍊块柨鏇炲€归弲顏勨攽閻樻剚鍟忛柛鐘崇墵瀹曨垶骞嶉绛嬫綗闂佸湱鍎ゅ鐟扮暦婢舵劖鐓i煫鍥ㄧ▓閸嬫挸鈽夊鍨涙敽缂傚倸鍊搁崐椋庣矆娓氣偓閹矂宕掑☉姘兼锤闂佸壊鍋呭ú鏍及閵夆晜鐓曢柡鍥ュ妼閻忕姷绱掗埀顒勫礃椤忓懎鏋戦棅顐㈡处濞叉粓鎯岄崱娑欑厓鐟滄粓宕滈悢濂夋綎闁惧繗顫夌€氭岸鏌熺紒妯轰刊闁告柨顦辩槐鎾存媴閸撴彃鍓遍柣銏╁灲缁绘繂顕i銈傚亾閿濆骸鏋熼柍閿嬪灩缁辨帞鈧綆鍋掗崕銉╂煕鎼达紕绠崇紒杈ㄥ笚瀵板嫭绻濋崒銈嗘闂備礁鎲$敮妤冩暜閹烘缍栨繝闈涱儛閺佸嫰鏌i幇顒傛憼闁靛洦绻冮妵鍕閳╁喚妫冮悗瑙勬处娴滎亜鐣峰鈧、鏃堝礋椤掆偓閸旀帡姊婚崒姘偓鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曢梻浣虹《閸撴繈鎮疯閹矂骞樼紒妯衡偓鍨箾閹寸儐浼嗛柟杈剧畱閻鐓崶銊р姇闁绘挾鍠栭弻锟犲磼濮樺彉铏庨梺璇″枟閸ㄥ潡寮婚敓鐘叉そ濞达絿枪閳峰姊虹拠鈥虫灍闁挎洏鍨介獮鍐ㄢ枎閹寸偛纾柡澶屽仧婢ф鎯堣箛娑欌拻濞达綀妫勯崥褰掓煕閻樺啿濮夐柟骞垮灲瀹曞ジ濡烽妷銊︽啺闂備胶绮濠氬储瑜斿畷娆撴偐閻愭垝绨婚梺瑙勫閺呮盯鎮橀埡浣叉斀妞ゆ棁濮ょ粈鈧梺瀹狀潐閸ㄥ潡骞冮埡鍜佹晝妞ゎ偒鍘奸ˉ姘節閻㈤潧浠﹂柟绋款煼瀹曟椽宕橀鑲╋紱闂佸湱鍋撻幆灞解枔娴犲鐓熼柟閭﹀灠閻ㄦ椽寮崼銉︹拺缂侇垱娲橀弶褰掓煕鐎n偅灏い顏勫暣婵″爼宕卞Δ鍐噯闂佽瀛╅崙褰掑礈濞戙垹鐒垫い鎺嶆祰婢规ɑ銇勯敂璇茬仸闁炽儻濡囬幑鍕Ω閿曗偓绾绢垱绻涢幘鏉戝毈闁搞劋鍗冲畷婊勬綇閳哄啰锛濋梺绋挎湰濮樸劏鈪甸梻浣呵归鍡涘箲閸パ屾綎缂備焦蓱婵挳鏌i悢鐓庝喊闁搞倕顑囩槐鎾存媴閸撴彃鍓遍梺鎼炲妼婢у海绱撻幘瀵割浄閻庯綆浜為惈鍕⒑缁嬫寧婀扮紒顔奸叄閹箖鎳滈悽鐢电槇闂侀潧楠忕徊浠嬫偂閹扮増鐓曢柡鍐e亾婵炲弶绮庨崚鎺撶節濮橆儵銊╂煃閸濆嫬鈧宕㈤悽鐢电=濞达絽澹婇崕蹇旂箾绾绡€妞ゃ垺鎸歌灃濞达絽鍚€缁ㄥ鏌熼崗鑲╂殬闁搞劌鎼悾宄扮暆閸曨剛鍘搁悗鍏夊亾閻庯綆鍓涜ⅵ闂備胶纭堕弲顏嗘崲濠靛棛鏆︽俊銈呮噺閺呮繈鏌嶈閸撴稓妲愰悙瀵哥瘈闁稿本绮嶅▓楣冩⒑閹稿海绠撻柣妤佺矊鍗卞┑鐘崇閳锋垹鈧娲栧ú銊ф暜濞戞瑤绻嗘い鎰╁灩閺嗘瑦銇勯弴顏嗙М妤犵偞锕㈤、娆撴寠婢跺棗浜鹃柣鎴eГ閻撴洟鐓崶銊﹀鞍闁瑰弶鎮傞弻锝夘敇閻曚焦鐤佸┑顔硷攻濡炰粙骞婇敓鐘参ч柛娑樻嫅缂嶄線寮诲☉銏犳闁绘劕寮堕崳鍦磼闊彃鈧洟鍩為幋锕€纾兼繝褎鎸稿﹢杈╁垝婵犳艾钃熼柕澶涘閸橆亪妫呴銏℃悙妞ゆ垵鎳橀崺鈧い鎺嶇劍缁€澶岀磼缂佹ê鍝烘慨濠勭帛閹峰懘宕ㄩ棃娑氱Ш鐎殿喚鏁婚、妤呭礋椤愩値妲遍梻浣藉吹閸犳劙宕抽弶鎳ㄦ椽顢旈崟骞喚鐔嗛悹杞拌閸庢垿鏌涘Ο鍝勮埞闁宠鍨块幃娆撳矗婢舵ɑ锛侀梻浣告啞濮婄懓煤閻旂厧绠栨慨妞诲亾闁糕晪绻濆畷鎺楀Χ閸♀晛鏅梻鍌欒兌缁垶宕濋弴鐑嗗殨闁割偅娲栫粣妤佷繆椤栨氨姣為柛瀣尭閳绘捇宕归鐣屼壕闂備浇妗ㄧ粈渚€鈥﹂悜钘壩ュù锝堝€介弮鍫濆窛妞ゆ挾濯寸槐鍙夌節閻㈤潧孝闁挎洏鍊濆畷顖炲箮缁涘鏅╂繝銏e煐閸旀牠鍩涢幒鎳ㄥ綊鏁愰崨顔兼殘闂佽鍨伴悧鎾诲蓟閿濆憘鏃堝焵椤掆偓铻炴繝闈涳攻椤ャ倝姊绘担绛嬫綈妞ゆ梹鐗犲畷鏉款潩閼搁潧鍓归梺鐟板⒔缁垶鎮¢弴銏$叆闁哄啫娴傞崵娆愵殽閻愭潙濮嶉柡灞剧〒閳ь剨缍嗛崑鍛焊椤撶喆浜滄い鎰剁悼缁犵偞銇勯姀鈽嗘畷闁瑰嘲鎳愰幉鎾礋椤愵偂绱楁繝鐢靛Х閺佸憡鎱ㄩ幘顔藉剦濠㈣埖鍔曞洿闂佸憡娲﹂崑鍛村磿閹剧粯鈷掑ù锝囩摂閸ゅ啴鏌涢敐搴℃珝鐎规洘濞婇弫鎰緞閸艾浜惧ù锝堝€介悢鐑樺仒闁斥晛鍟弶鎼佹⒑鐠囨彃鍤辩紓宥呮瀹曟垿宕ㄧ€涙ê浠奸梺鍓插亝濞叉﹢鍩涢幒鎳ㄥ綊鏁愰崨顔兼殘闂佽鍨伴悧濠囧Φ閸曨噮妲烽梺绋款儐閹瑰洤顫忓ú顏呭仭闁哄瀵ч鈧梻浣烘嚀閸ゆ牠骞忛敓锟�/闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曚綅閸ヮ剦鏁冮柨鏇楀亾闁汇倗鍋撶换婵囩節閸屾稑娅ら悗瑙勬礃閻擄繝寮诲☉銏犵疀闁稿繐鎽滈崙褰掓⒑缁嬭法绠茬紒顔芥崌瀵濡堕崶鈺冪厯闁荤姵浜介崝瀣垝閸偆绠鹃悗娑櫭▓鐘绘煕婵犲啰澧遍柟骞垮灩閳规垹鈧綆鍋掑Λ鍐ㄢ攽閻愭潙鐏﹂悽顖滃仜閿曘垽宕ㄩ娑欐杸闂佺粯鍔栬ぐ鍐箖閹达附鐓曢柡鍐e亾闁荤啿鏅涢锝嗙節濮橆厽娅滄繝銏f硾璋╅柍鍝勬噺閻撳繐顭跨捄铏瑰闁告梹娼欓湁闁绘ê鐪伴崑銏℃叏婵犲啯銇濈€规洦鍋婃俊鐑藉Ψ閵堝洦宕熷┑锛勫亼閸婃牕煤閿曞倸鐭楅柛鎰靛枛閺勩儵鏌嶈閸撴岸濡甸崟顖氱闁糕剝銇炴竟鏇熺節閻㈤潧袥闁稿鎹囬弻娑樜旈崘銊ゆ睏闂佸搫顑呯粔褰掑蓟閺囷紕鐤€閻庯綆浜炴禒鎯ь渻閵堝骸浜濇繛鍙夅缚閹广垹鈹戠€n偒妫冨┑鐐村灦閼归箖路閳ь剟姊虹拠鎻掝劉缁炬澘绉撮~婵嬪Ω閳轰胶鍔﹀銈嗗笒閸婂綊宕甸埀顒勬煟鎼淬垹鍤柛妯恒偢閳ワ箓宕归銉у枛閹剝鎯旈敐鍥╂憣濠电姷鏁搁崑娑樜熸繝鍐洸婵犻潧顑呴悡鏇㈡煙鐎电ǹ浜煎ù婊勭矒閺岀喖寮堕崹顕呮殺缂佺偓宕樺▔鏇犳閹烘绠涙い鎾跺櫏濡啴姊洪崫鍕拱缂佸鎹囬崺鈧い鎺戯功缁夌敻鏌涚€n亝顥為柡鍛埣椤㈡宕掑⿰鍜冪床闂備胶枪閺堫剛绮欓幋婢濆綊顢欑粵瀣啍闂佺粯鍔曞鍫曀夐姀鈶╁亾濞堝灝鏋涢柣鏍с偢閻涱噣骞囬鐔峰妳濡炪倖鏌ㄩ崥瀣枍閿燂拷 bjb@jiyifa.com 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵婢樿灃闁挎繂鎳庨弳娆戠棯閹岀吋闁哄瞼鍠栭獮鍡氼槾闁圭晫濞€閺屾稑鈻庤箛鏇狀啋闂佸搫鏈ú鐔风暦閻撳簶鏀介柟閭﹀帨瑜斿娲传閸曨剙顎涢梺鍛婃尵閸犳牠鐛崘顭戞建闁逞屽墴楠炲啫鈻庨幋鐐茬/闁哄鍋熸晶妤呮儓韫囨柧绻嗛柣鎰典簻閳ь剚娲滈幑銏犖旀担渚锤濡炪倖甯掗崐褰掞綖閺囥垺鐓欓柟顖嗗懏鎲兼繝娈垮灡閹告娊寮诲☉妯锋斀闁告洦鍋勬慨銏狀渻閵堝棙鐓ユい锕傛涧椤繘鎼归崷顓狅紲濠碘槅鍨崇划顖炲磿閹惧墎纾藉ù锝勭矙閸濈儤绻涢懠顒€鏋涚€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼崫鍕棞濞存粍鍎抽埞鎴︽偐椤愵澀澹曢梻鍌欑贰閸撴瑧绮旂€电ǹ顥氶柛褎顨嗛悡娆撴倵閻㈢櫥瑙勭墡婵$偑鍊ら崑鍛哄Ο鍏煎床婵犻潧顑嗛ˉ鍫熺箾閹存繂鑸归柛鎾插嵆閺岋絾鎯旈姀锝咁棟濡炪倧缂氶崡铏繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊洪悷鎵憼缂佹椽绠栧畷鎴﹀箻鐠囨彃寮烽棅顐㈡搐椤戝嫬效濡ゅ懏鈷戦柛婵嗗椤箓鏌涙惔銏㈠弨鐎规洘鍔欏畷濂稿即閻樻彃绲奸梻浣规偠閸庮垶宕濆鍥︾剨闁绘鐗勬禍婊堟煏婢诡垰鍟犻弸鍛存⒑閸濆嫮鐒跨紒韫矙閸╃偤骞嬮敃鈧悙濠囨煃閸濆嫬鈧悂宕归柆宥嗙厽閹兼番鍊ゅḿ鎰箾閸欏顏堬綖濠靛惟闁宠桨鑳堕鍡涙⒑缂佹〒褰掝敋瑜忕划濠氭偨閸涘﹦鍘甸梺缁樺灦钃遍柣鎿勭秮閺岀喖顢氶崱娆懶滃┑顔硷工椤嘲鐣烽幒鎴僵妞ゆ垼妫勬禍楣冩煕濠靛嫬鍔楅柛瀣尭椤繈濡烽妷銉綆闁诲氦顫夊ú姗€宕濆▎鎾跺祦閻庯綆鍠楅弲婵嬫煃瑜滈崜鐔煎箖閻愬搫鍨傛い鎰С缁ㄥ姊洪崷顓炲妺闁糕晛锕銊︾節濮橆厼鈧灚鎱ㄥΟ鐓庝壕閻庢熬鎷�