届高三区一检数学文科试题(含答案)

编辑: 逍遥路 关键词: 高三 来源: 高中学习网






高三文科数学质量检测试题(卷).10
试卷分第Ⅰ卷()和第Ⅱ卷(非)两部分,考生作答时,将答案写在答题卡上,在本试卷上答题无效,本试卷满分150分,考试时间为120分钟.
注意事项:
1. 考生答题前,先将条形码贴在条形码区,并将本人姓名、学校、准考证号填写在相应位置.
2. 选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚,将答案书写在答题卡规定的位置上.
3. 所有题目必须在答题卡上作答,在试题卷上答题无效.
参考公式: , , , , .

第Ⅰ卷(选择题)
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则
A. B. C. D.
2.已知向量 , ,若 ‖ ,且向量 , 同向,则实数
等于
A. B. 或 C. D.0
3.设 ,则“ ”是“ ”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.在一次投掷链球比赛中,甲、乙两位运动员各投掷一次,设命题 是“甲
投掷在20米之外”, 是“乙投掷在20米之外”,则命题“至少有一
位运动员没有投掷在20米之外”可表示为
A. 或 B. 或非 C.非 且非 D.非 或非
5.若 ,则
A. B. C. D.
6. 的内角 的对边分别是 ,若 , ,
,则
A. B. C. D.
7.函数 的零点个数为
A. B. C. D.
8.已知函数 ,下列结论中错误的是
A.存在 ,
B.若 是 的极小值点,则 在区间 上单调递减
C.若 是 的极值点,则
D.函数 无最大值
9.设 , , ,则
A. B. C. D.
10.若函数 的图像关于直线 对称,则 的最大值是
A. B. C. 或 D.不存在
第Ⅱ卷(非选择题)
二、题:本大题共5小题,每小题5分,共25分.
11.计算: ;
12.函数 其中
的部分图
像如图所示,则其解析式为 ;
13.若直线 与幂函数 的图像相切于点 ,则直线 的方程
为 ;
14.已知两个单位向量 , 的夹角为60°, ,若 ,则 _____;
15.观察下列不等式:
① ;② ;
③ ;…
则第 个不等式为 .
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(本小题满分12分)
叙述并证明余弦定理.

17.(本小题满分12分)
已知向量 , , ,设函数
.
(1)求 的最小正周期;
(2)求 在 上的最大值和最小值.
18.(本小题满分12分)
已知关于 的不等式 的解集为 .
(1)当 时,求集合 ;
(2)当 且 时,求实数 的范围.

19.(本小题满分12分)
甲厂以 千克/小时的速度匀速生产某种产品(生产条件要求
),每小时可获得的利润是 元.
(1)求证:生产 千克该产品所获得的利润为 元;
(2)要使生产 千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.

20.(本小题满分13分)
已知函数 .
(1)求 的反函数 ;
(2)求 的图像上点 处的切线方程;
(3)证明:函数 只有一个零点.

21.(本小题满分14分)
已知函数 , .
(1)求 的极值;
(2)当 时,若不等式 在 上恒成立,求 的取值范围.


高三文科数学质量检测试题答案.10
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.B 2.C 3.A 4.D 5.C 6.D 7.B 8.B 9.A 10.B
二、题:本大题共5小题,每小题5分,共25分.
11.29 12. 13. 14.
15.
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16. (本小题满分12分)
解:余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦之积的两倍.
或:在△ABC中, 为A,B,C的对边,有 ,
, .(5分)
证明:在△ABC中,

∴ (11分)
同理可证: , . (12分)
注:此题还有其它证法,酌情按步骤给分.
17. (本小题满分12分)
解:(1)
(4分)
的最小正周期 .
即函数 的最小正周期为 . (6分)
(2) , , (8分)
由正弦函数的性质,
当 ,即 时, 取得最大值1. (10分)
当 ,即 时, 取得最小值 . (12分)
18.(本小题满分12分)
解: 解:(1)当 时, ……5分
(2) ,①……8分
,②……11分
由①②知 ……12分
19. (本小题满分12分)
解:(1)每小时生产 千克产品,获利 ,
生产 千克该产品用时间为 , ………3分
所获利润为 元. ………6分
(2)生产900千克该产品,所获利润为
………9分
所以 ,最大利润为 元. ………12分
20.(本小题满分13分)
解:(1)因为 , . (2分)
所以 的反函数 , .(5分)
(2)设所求切线的斜率为 ,
(7分)
于是在点(1,0)处的切线方程为: .(9分)
(3)
, 存在零点 .
又 ,令 ,则 ,(11)
当 时, , 在 单调递减.
当 时, , 在 单调递增.
在 有唯一的极小值 .即 在 上的最小值为 .
(仅当 时等号成立), 在 上单调递增函数.
在 上只有一个零点. (13分)
21.(本小题满分14分)
解:(1)函数 的定义域为 , ………………1分
,令 得 ………………3分
当 为增函数;
当 为减函数; …………7分
可知 有极大值为 ……………………………8分
(2)由于 ,所以不等式 在区间 上恒成立,
即 在 上恒成立,设
由(1)知, 在 处取得最大值 , ∴ ……14分




本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaosan/1087821.html

相关阅读:宁夏银川一中届高三下学期第一次模拟考试 数学(文)

闂傚倷鑳剁划顖炪€冮崨瀛樺亱濠电姴鍊寸紓姘舵煕椤愩倕鏋旈柣婵嗙埣閺岋絽螖閳ь剟鎮ф繝鍥风稏闁哄稁鍘介悡銉︾箾閹寸偟鎳呮い锝呭级缁绘繈鍩€椤掍礁顕遍柡澶嬪灦椤ユ繈姊洪幖鐐插妧闁告劏鏅滃▓浠嬫⒑鐠囧弶鎹i柟铏尭閿曘垽鏌嗗鍛€柡澶婄墑閸斿酣銆呴弻銉︾厵闁绘垶蓱绾捐崵绱掗鑺ュ暗缂佽鲸鎹囧畷姗€鍩℃担杞版偅闂備浇妗ㄩ梽宥夊磹濠靛宓侀悗锝庡枟閸嬵亝銇勯弽銊ь暡妞ゆ柨娲娲川婵犲嫭鍣梺鎼炲姀閸嬫劕鈽夐悽绋跨劦妞ゆ帒瀚悡鐔告叏濡厧甯舵繛鍛懅缁辨帗娼忛妸褏鐣奸梺褰掝棑婵炩偓濠碉紕鍏橀弫鍌炴偩鐏炵ǹ浜炬い鏇楀亾闁诡喖鍢查埢搴ょ疀閹绢垰浜惧┑鐘宠壘绾惧鏌ㄥ┑鍡橆棤妞も晝鍏橀弻娑樷槈閸楃偛顫╅梺杞拌閺呯娀骞冪捄琛℃闁哄诞鍐剧€辩紓鍌氬€哥粔闈浳涢崘顔肩疇闁规崘顕у婵囥亜閺冨洤袚閻庢俺娅曠换娑氣偓娑欋缚閻霉濠娾偓缁瑩宕洪埀顒併亜閹哄棗浜鹃梺绋匡功閹虫捇鏁冮姀銈呯妞ゆ梹鍎冲畷銉モ攽閻愬弶顥滄繛瀵稿厴閹苯鐣濋崟顒傚幍缂傚倷鐒﹂敋濠殿喖鍟扮槐鎺旀崉閾忛€涚驳缂備礁鐭傛禍鍫曞春閸曨垰绀冪憸蹇曠矆閳ь剟姊虹拠鎻掝劉缂佸甯¢弫瀣⒑缁嬫鍎忕紒澶婂閸掓帒顫濋鐐存そ椤㈡棃宕崘顏勬優闂傚倷绀侀幖顐︽偋閸℃瑧鐭撻悗娑櫳戦崣蹇涙煟閺傚灝鎮戦柡鍜佸墴閹﹢鎮欑捄杞版睏闂佽崵鍠愮换鍫ュ蓟閻旂厧鍑犳い鎰╁灩婵洖鈹戦悩顐壕婵炴挻鍩冮崑鎾搭殽閻愯尙效闁糕斁鍋撳銈嗗笒鐎氼剛鈧艾顦…璺ㄦ崉娓氼垰鍓辩紓鍌氱М閸嬫捇姊绘担鐟邦嚋缂佸鍨剁缓浠嬪籍閸屾粎鐣舵繝銏e煐閸旀洜绮婚妷鈺傜厵缂佸娼¢妤併亜鎼淬垺宕岄柡宀嬬秮閸╋繝宕楅敃鈧紞濠傜暦閿濆牜妲婚梺宕囩帛濡啫顕i幘顔藉€烽柛蹇撴憸閻姊洪懡銈呅i柛鏂炲懎绶ゅ┑鍌溓圭粻鏌ユ煏韫囧鈧洝绻氶梻浣呵归張顒勫礄閻熸噴娲Χ婢跺鍘卞┑鐐叉閸旀洟鎮橀埡鍌ゆ闁绘劕寮堕崰妯尖偓娈垮枤閺佸銆佸Δ鍛<婵犲﹤鍟抽澶愭⒒娴e憡鎯堥柣妤€妫濊棟闁规鍠氶惌鎾绘煕閿旇骞愰柛瀣尭椤繈顢楁担瑙勫濠电姴鐥夐妶鍕儓闂佽鍣崳锝夈€佸Ο琛℃斀閻庯綆鍋呴悾鍫曟⒒娴e憡鎯堟い褉鍋撻梺鐟板殩閹凤拷/闂備礁鎼ˇ顐﹀疾濠婂懏宕查柛鎰典簼閸忔粓鏌ょ粙璺ㄤ粵濞存嚎鍊栫换婵嬫濞戞帞婀呭┑鐐插悑閸旀瑩寮婚敐澶娢╅柕澶堝労娴犲ジ姊洪崫銉ヤ粶妞ゆ洦鍙冮崺鈧い鎺嗗亾婵犫偓閸楃偐鏋嶉柕蹇嬪灪椤洘绻濋棃娑氬閻庢碍姘ㄩ埀顒傛嚀鐎氼厼顭垮Ο鐓庣筏婵炲樊浜濋埛鎴炪亜閹板墎纾跨紒鎰閺屾稓鈧綆鍋嗘晶顒傜磼閸屾稑娴鐐叉瀵爼骞愭惔顔兼櫗 bjb@jiyifa.com 婵犵數鍋為崹鍫曞箰妤e啫纾婚柟鎯х摠閸欏繘鏌曢崼婵愭Ч闁哄拋鍓熼幃姗€鎮欑捄杞版睏濡炪倕绻楁禍顒傛閹惧瓨濯撮柛婵勫劤椤斿姊虹紒妯绘儓缂佽鲸娲熼崺鈧い鎺嗗亾婵犫偓闁秴纾块柟瀵稿У椤洘绻濋棃娑卞剰閻庢艾顦伴妵鍕箳閹存績鍋撻弰蹇嬩汗闁哄被鍎查崐鍫曠叓閸ャ劍灏版い銉у█閺岋絽鈹戦崶鈺傚垱閻庤娲樺銊╁箯閻樿绠甸柟鐑樻煣閹綁姊婚崒姘偓鍝モ偓姘ュ姂瀹曟劙骞嬮敃鈧悞鍨亜閹烘埊鏀婚悗姘炬嫹