2013年第二次高考诊断试卷
数学(理)试题
注意事项:
1.本试卷分第1卷()和第Ⅱ卷(非)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.
2.回答第1卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.
4.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷 (选择题,共60分)
一、选择题:本大题共12小题.每小题5分。在每小题给出的四个选项中。只有一项是符合题目要求的.
1.已知集合A={0,1},B={ },则 A B=
A.{0,1} B.{0,1,一1}
C.{0,1,一1, } D.{0,l,一1,一 }
2.若复数 ,则z为
A.i B.一i C.2i D.1+i
3.显示屏有一排7个小孔可显示0或l,若每次显示其中3个小孔,但相邻的两孔不能同时显示,则该显示屏能显示信号的种数共有
A.10 B.48 C.60 D.80
4.已知椭圆 的左焦点F1,右顶点A,上顶点∠F1BA=90°,则椭圆的离心率是
A. B. C. D.
5.设变量x,y满足 ,则戈.4+2y的最大值和最小值分别为
A.1,-1 B.2,一2 C.1,一2 D.2,一1
6.执行右图所示的程序,输出的结果为48,对判断框中应填人的条件为
A.i≥4?
B.i>4?
C.i≥6?
D.i>6?
7.已知某几何体的三视图如右,根据图中标出的尺寸,可
得这个几何体的体积是
A. B.
C. D.
8.各顶点都在一个球面上的正四棱柱高为4,体积为16,则
这个球的表面积是
A.16 B.20 C.24 D.32
9.已知函数y=2sin2( 则函数的最小正周期
T和它的图象的一条对称轴方程是
A.T=2 ,一条对称轴方程为
B.T=2 ,一条对称轴方程为
C.T= ,一条对称轴方程为
D.T= ,一条对称轴方程为
10.已知点F是双曲线 的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A、B两点,△ABE是锐角三角形,则该双曲线的离心率e的取值范围是
A.(1,+∞) B.(1,2) C.(1,1+ ) D.(2,1+ )
11.已知函数 和 在[一2,2]的图象如下图所示,给出下列四个命题:
①方程 有且仅有6个根;②方程 有且仅有3个根;
③方程 有且仅有5个根;④方程 有且仅有4个根.
其中正确的命题个数是
A.4 B.3 C.2 D.1
12.已知定义域为R的函数 满足 ,且当x>2时, 单调递增,如果 且( )( )<0,则下列说法正确的是
A. 的值为正数 B. 的值为负数
C. 的值正负不能确定 D. 的值一定为零
第Ⅱ卷 (非选择题,共90分)
本卷包括必考题和选考题两部分.第13题一第21题为必考题。每个试题考生都必须做答.第22题一第24题为选考题,考生根据要求做答.
二、题:本大题共4小题,每小题5分.
13.若点P是曲线 任意一点,则点P到直线y=x-2的最小值为 .
14.有3人,每人都以相同的概率被分配到4个房间中的一间,则至少有2人分配到同一房间的概率是 .
15.设t为实数, 是向量,若向量2t 与向量 的夹角为钝角,则实数t的取值范围是 .
16.设函数 表示不超过x的最大整数,则函数y=[ )]的值域集合 .
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
已知数列{ }数的前n项和 ,数列{ }为等比数列,且满足 ,
(I)求数列{ },{ }的通项公式;
(Ⅱ)求数列{ }的前n项和.
18.(本小题满分12分)
某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
(I)从这50名教师中随机选出2名,求2人所使用版本相同的概率;
(Ⅱ)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为 ,求随机变量 的变分布列和数学期望.
19.(本小题满分12分)
如图,已知正四棱锥P-ABCD的底面边长及侧棱长均为
13,M、N分别是以、,BD上的点,且PM:MA=BN:ND=5:8.
(I)求证:直线MN∥平面PBC;
(II)(Ⅱ)求直线MN与平面ABCD所成的角的正弦值.
20.(本小题满分12分)
抛物线 的准线的方程为x=-2,该抛物线上的每个点到准线x=-2的距离都与到定点N的距离相等,圆N是以N为圆心,同时与直线 相切的圆,
(I)求定点N的坐标;
(Ⅱ)是否存在一条直线 同时满足下列条件:
① 分别与直线 交于A、B两点,且AB中点为E(4,1);
② 被圆N截得的弦长为2.
21.(本小题满分12分)
已知函数
(I)若函数在区间 上存在极值,求实数a的取值范围;
(Ⅱ)如果当 ,不等式 恒成立,求实数k的取值范围?
(Ⅲ)求证:[(n+1)!]2>(n+1)?en-2(n∈N*).
请考生在第22、23、24题中任选一题做答。如果多做。则按所做的第一题记分.做答时请写清题号.
22.(本小题满分10分)选修4-1:几何证明选讲 曰
已知在直角三角形ABC中,∠ACB=90°,以BC为直
径的⊙D交AB 点D,连接DO并延长交AC的延长线于
点E,⊙D的切线DF’交AC于点F
(I)求证:AF=CF;
(Ⅱ)若ED=4,sin∠E= ,求CE的长.
23.(本小题满分10分)选修4-4:坐标系与参数方程
平面直角坐标系中,直线 的参数方程是 (t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为
(I)求直线 的极坐标方程;
(Ⅱ)若直线 与曲线C相交于A、B两点,求AB.
24.(本小题满分10分)选修4-5:不等式选讲
设命题P:关于x的不等式x+ >1的解集为R,命题Q:函数y=lg( )的定义域为R.如果P且Q为假命题,P或Q为真命题,求实数a的取值范围.
本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaosan/72906.html
相关阅读:2014高三数学一诊模拟考试文科试题(含答案)
闂備胶绮〃鍛存偋婵犲倴缂氶柛顐ゅ枔閻濆爼鏌eΔ鈧悧濠囷綖閺嶎厽鐓ユ繛鎴炵懅椤e弶绻濋埀顒佸閺夋垶顥濋梺鎼炲劀閸愨晜娈介梺璇叉捣閹虫挸锕㈤柆宥呮瀬閺夊牄鍔庨々鏌ユ煙閻戞ɑ纾荤紒顔芥尵缁辨捇宕橀埡浣轰患闂佽桨闄嶉崐婵嬬嵁鐎n喗鍋い鏍ㄧ椤斿洭姊洪崨濠勬噭闁搞劏鍋愬☉鐢稿焵椤掑嫭鐓熸慨妯煎帶濞呮瑧绱掓潏銊х畼闁归濞€婵$兘鏁傞悾灞稿亾椤曗偓閹嘲鈻庤箛鎾亾婵犳艾纾婚柨婵嗘椤╃兘鏌涘☉鍗炲闁轰讲鏅犻幃璺衡槈閺嵮冾瀱缂傚倸绉靛Λ鍐箠閹捐宸濇い鏃囧Г鐎氳櫕绻涚€涙ḿ鐭嬪ù婊€绮欓崺鈧い鎺嗗亾闁稿﹦鎳撻敃銏ゅ箥椤旀儳宕ュ┑鐐叉濞寸兘鎯屽畝鍕厵缂備焦锚婵啰绱掔捄铏逛粵缂佸矂浜堕崺鍕礃瑜忕粈鈧梺璇插缁嬫帡鏁嬮梺绋款儏缁夊墎鍒掑顑炴椽顢旈崪鍐惞闂備礁鎼悧鍡欑矓鐎涙ɑ鍙忛柣鏂垮悑閺咁剟鎮橀悙璺轰汗闁荤喐绻堥弻鐔煎几椤愩垹濮曞┑鐘亾濞撴埃鍋撴鐐茬Ч閸┾偓妞ゆ帒瀚€氬顭跨捄渚剱缂傚秮鍋撻梻浣瑰缁嬫垶绺介弮鍌滅當濠㈣埖鍔曠粻銉╂煙缁嬪潡顎楁い搴㈡崌閺岋綁鍩¢崗锕€缍婂畷锝堫槻闁崇粯妫冨鎾倷閸忓摜鐭楅梺鑽ゅУ閸斞呭緤婵傜ǹ绠查柕蹇嬪€曡繚闂佺ǹ鏈崙鐟懊洪妶澶嬬厱婵炲棙鍔曢悘鈺傤殽閻愬弶鍠樼€殿喚鏁婚、妤呭磼濠婂啳顔夐梻浣告惈閻楀棝藝閹殿喚鐭撻柛锔诲幐閸嬫挸顫濋浣规嫳婵犲痉銈勫惈闁诡噮鍣i、妯衡攽鐎n偅鐣堕梻浣告惈椤р偓闁瑰嚖鎷�/闂佸搫顦弲婊呮崲閸愵亝鍏滈柤绋跨仛娴溿倖绻濋棃娑掔湅婵炲吋鍔欓弻锝夊Ω閵夈儺浠奸梺鍝ュ仜椤曨參鍩€椤掆偓濠€鍗炩枍閵忋垺顫曟繝闈涚墛鐎氭氨鈧懓瀚妯煎緤濞差亝鈷戞い鎰剁磿缁愭棃鏌涚€n偆澧紒鍌涘浮楠炲棝寮堕幐搴晭 bjb@jiyifa.com 濠电偞鍨堕幐楣冨磻閹惧瓨鍙忛柕鍫濐槹閺咁剟鎮橀悙璺轰汗妞ゅ繗浜槐鎾存媴閸濄儳顔夐梺缁樻惈缁辨洟鍩€椤掆偓濠€閬嶅磿閹寸姵顫曟繝闈涱儏鐎氬銇勯幒鎴濃偓鏄忋亹閺屻儲鍊堕煫鍥ㄦ尰椤ョ娀鏌e┑鍥╂创鐎规洘姘ㄩ幏鐘诲箵閹烘柧鎮i梻鍌氬€哥€氥劑宕愰幋锕€鐒垫い鎺戯攻鐎氾拷