等比数列的前n项和检测考试题(有答案)

编辑: 逍遥路 关键词: 高一 来源: 高中学习网


2.3.2 等比数列的前n项和第二课时 优化训练
1.各项均为实数的等比数列{an}的前n项和记作Sn,若S10=10,S30=70,则S40等于(  )
A.150           B.-200
C.150或-200 D.400或-50
解析:选A.根据等比数列前n项和的性质可知,S10,S20-S10,S30-S20,S40-S30成等比数列,且公比为q10,利用等比数列的性质可得(S20-S10)2=S10(S30-S20),所以S220-10S20-600=0,解得S20=-20或S20=30.因为S20=S10(1+q10)>0,所以S20=30.再次利用等比数列的性质可得(S30-S20)2=(S20-S10)(S40-S30),求得S40=150.
2.已知等比数列{an}的前n项和Sn=t?5n-2-15,则实数t的值为(  )
A.4 B.5
C.45 D.15
解析:选B.由Sn=t25?5n-15得t25=15,
∴t=5.
3.设f(n)=2+24+27+210+…+23n+1(n∈N),则f(n)等于(  )
A.27(8n-1) B.27(8n+1-1)
C.27(8n+3-1) D.27(8n+4-1)
解析:选B.依题意,f(n)是首项为2,公比为8的前n+1项求和,根据等比数列的求和公式可得.
4.(2009年高考全国卷Ⅱ)设等比数列{an}的前n项和为Sn,若a1=1,S6=4S3,则a4=________.
解析:由题意知{an}的公比q不为1,
又由S6=4S3得a1?1-q6?1-q=4?a1?1-q3?1-q,解得q3=3,
∴a4=a1q3=1?3=3.
答案:3
5.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和Sn.
解:(1)设{an}的公差为d,{bn}的公比为q,
则依题意有q>0且1+2d+q4=21,1+4d+q2=13.
解得d=2,q=2,
所以an=1+(n-1)d=2n-1,bn=qn-1=2n-1.
(2)anbn=2n-12n-1.
Sn=1+32+522+…+2n-32n-2+2n-12n-1,①
2Sn=2+3+52+…+2n-32n-3+2n-12n-2.②
②-①,得Sn=2+2+22+222+…+22n-2-2n-12n-1
=2+2×(1+12+122+…+12n-2)-2n-12n-1
=2+2×1-12n-11-12-2n-12n-1=6-2n+32n-1.
1.(2014年永安高二检测)已知等比数列{an}中,a1+a2+a3=40,a4+a5+a6=20,则前9项之和等于(  )
A.50 B.70
C.80 D.90
解析:选B.由a4+a5+a6=q3(a1+a2+a3)得q3=12,
∴a7+a8+a9=q3(a4+a5+a6)=10,
∴前9项之和等于40+20+10=70.
2.已知数列{an}为等比数列,若a8a4=2,S4=4,则S8等于(  )
A.12 B.24
C.16 D.32
解析:选A.由题意知q4=2,
∴S8=S4+q4S4=S4+2S4=3S4=12.
3.某人为了观看2014年奥运会,从2005年起,每年5月10日到银行存入a元定期储蓄,若年利率为p且保持不变,并约定每年到期存款均自动转为新的一年定期,到2014年将所有的存款及利息全部取回,则可取回的钱的总数(元)为(  )
A.a(1+p)7
B.a(1+p)8
C.ap[(1+p)7-(1+p)]
D.ap[(1+p)8-(1+p)]
解析:选D.2005年存入的a元到2014年所得的本息和为a(1+p)7,2006年存入的a元到2014年所得的本息和为a(1+p)6,依此类推,则2014年存入的a元到2014年的本息和为a(1+p),每年所得的本息和构成一个以a(1+p)为首项,1+p为公比的等比数列,则到2014年取回的总额为a(1+p)+a(1+p)2+…+a(1+p)7=a?1+p?[1-?1+p?7]1-?1+p?=ap[(1+p)8-(1+p)].
4.设数列{an}是公比为a(a≠1),首项为b的等比数列,Sn是前n项和,则点(Sn,Sn+1)(  )
A.在直线y=ax-b上 B.在直线y=bx+a上
C.在直线y=bx-a上 D.在直线y=ax+b上
解析:选D.由题意可得,Sn=b?1-an?1-a,Sn+1=b?1-an+1?1-a=a?b?1-an?1-a+b=aSn+b,∴点(Sn,Sn+1)在直线y=ax+b上.
5.等比数列{an}是递减数列,其前n项的积为Tn,若T13=4T9,则a8?a15等于(  )
A.±2 B.±4
C.2 D.4
解析:选C.a8?a15=a10?a13=a11a12=±2,由{an}为递减数列,舍去-2.
6.西部某厂在国家积极财政政策的推动下,从2008年1月起,到2010年12月止的36个月中,月产值不断递增且构成等比数列{an},若逐月累计的产值Sn=a1+a2+…+an满足Sn=101an-36,则该厂的年产值的递增率为(精确到万分位)(  )
A.12.66% B.12.68%
C.12.69% D.12.70%
答案:B
7.已知等比数列前n项和为Sn,S10S5=3132,则数列的公比为________.
解析:设该数列的公比为q,显然q≠1.
由S10S5=3132=a1?1-q101-qa1?1-q51-q=1+q5.
解得q=-12.
答案:-12
8.等比数列{an}共2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=________.
解析:由题意S2n=-240,S奇-S偶=80,
得S奇=-80,S偶=-160,所以q=S偶S奇=2.
答案:2
9.数列{an}中,an=2n-1?n为正奇数?,2n-1?n为正偶数?.设数列{an}的前n项和为Sn,则S9=________.
解析:S9=(a1+a3+a5+a7+a9)+(a2+a4+a6+a8)
=(1+22+24+26+28)+(3+7+11+15)
=377.
答案:377
10.数列{an}的前n项和记为Sn,已知an=5Sn-3(n∈N+),求数列{an}的通项公式.
解:an=5Sn-3,①
a1=5S1-3=5a1-3,
∴a1=34.
n≥2时,an-1=5Sn-1-3②
①②两式相减an-an-1=5an,
∴an=-14an-1故{an}为首项为34,公比为-14的等比数列,
∴an=34-14n-1.
11.(2009年高考浙江卷)设Sn为数列{an}的前n项和,Sn=kn2+n,n∈N+,其中k是常数.
(1)求a1及an;
(2)若对于任意的m∈N+,am,a2m,a4m成等比数列,求k的值.
解:(1)当n=1,a1=S1=k+1,
n≥2,an=Sn-Sn-1=kn2+n-[k(n-1)2+(n-1)]=2kn-k+1,(*)
经验证,n=1时(*)式成立,
∴an=2kn-k+1.
(2)∵am,a2m,a4m成等比数列,
∴a22m=am?a4m,
即(4km-k+1)2=(2km-k+1)(8km-k+1),
整理得,mk(k-1)=0,
对任意的m∈N+成立,∴k=0或k=1.
12.某家用电器一件现价2000元,实行分期付款,每期付款数相同,每期为一月,购买后一个月开始付款,每月付款一次,共付12次,购买后一年还清,月利率为0.8%,按复利计算,那么每期应付款多少?(1.00812≈1.1)
解:设每期应付款x元,则第1期付款到最后一次付款时的本息和为x(1+0.008)11,第2期付款到最后一次付款时的本息和为x(1+0.008)10,…,第12期付款没有利息,所以各期付款连同利息之和为x(1+0.008)11+x(1+0.008)10+…+x=1.00812-11.008-1x.
又所购电器的现价及其利息之和为2000×1.00812,
于是有1.00812-11.008-1x=2000×1.00812.
解得x=16×1.008121.00812-1≈176(元).
所以每期应付款176元.


本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaoyi/55157.html

相关阅读:2013年高一新生数学模底试题(含答案)

闂傚倸鍊烽懗鍓佸垝椤栫偑鈧啴宕ㄧ€涙ê浜辨繝鐢靛Т閸婂绱撳鑸电厱妞ゆ劑鍊曢弸鏃堟煟濠靛棛鍩i柡宀嬬到铻栭柍褜鍓熼幃褎绻濋崶椋庣◤闂佸搫绋侀崢浠嬫偂閵夛妇绠鹃柟瀵稿仧閹冲懏銇勯敐鍛骇缂佺粯绻堥崺鈧い鎺嶇椤曢亶鏌℃径瀣仸妞ゃ儲绻堝娲箹閻愭彃濡ч梺鍛婂姀閺呮粌鈻撴禒瀣拺閻犲洤寮堕幑锝夋煙閾忣偅灏柨鏇樺灲閺屽棗顓奸崨顔锯偓顒勬煛婢跺﹦澧戦柛鏂块叄閵嗗懘寮婚妷锔惧幍闂佺粯鍨惰摫缁炬崘宕电槐鎺楊敊閼恒儱鏆楃紓浣介哺閹瑰洤鐣峰鈧崺鈩冩媴鏉炵増鍋呴梻鍌欐祰濡椼劑姊藉澶婄9婵犻潧顑囧畵渚€鎮楅敐搴℃灍闁稿浜濋妵鍕冀閵娧屾殹濡炪倖鏌ㄥú顓烆潖濞差亜宸濆┑鐘插閸n參姊洪幖鐐插闁稿鍔曢埥澶愭偨缁嬭法鍔﹀銈嗗笒鐎氼參鎮¢悢鍛婂弿婵☆垳鍘х敮鑸电箾閸涱喚鎳呯紒杈ㄥ笚濞煎繘濡歌閻eジ姊鸿ぐ鎺濇濠电偐鍋撴繝纰夌磿閸忔﹢寮崒鐐村仼閻忕偟枪娴滅偓銇勯弴妤€浜鹃梺璇″枛閸㈡煡鍩㈡惔銈囩杸闁圭虎鍨版禍鎯р攽閻樺疇澹樼痪鎯ь煼閺屻劌鈹戦崱姗嗘¥濡炪倐鏅濋崗姗€寮诲☉妯锋闁告鍋涢~鈺呮⒑鏉炴媽顔夐柡鍛█楠炲啰鎹勭悰鈩冾潔闂佸搫璇為崘鍓р偓杈╃磽閸屾艾鈧摜绮旈棃娴虫盯宕橀鑲╃枃闂佽宕橀褍顔忓┑鍥ヤ簻闁哄啫娲よ闁诲孩淇哄▍鏇犳崲濞戞埃鍋撳☉娆嬬細闁活厼顑呴湁婵犲ň鍋撶紒顔界懇瀹曟椽鍩€椤掍降浜滈柟鍝勬娴滈箖姊虹粙鍖″姛闁硅櫕鎹囬弫鍐閵堝懐顓煎銈嗘⒐閸庡啿鐣烽妷銉㈡斀闁绘劕寮堕ˉ婊勭箾鐎电ǹ鍘撮柟顖氳嫰閻f繈宕熼鍌氬箥缂傚倸鍊烽悞锕傛晪婵犳鍠栭崯鎵閹烘梹宕夐柧蹇涒偓娑氶┏缂傚倷绀侀惌鍌涚閸洖鏄ラ柛鏇ㄥ灠缁€鍐喐韫囨洜鐭嗛柍褜鍓熷铏规嫚閹绘帩鍔夌紓浣割儐鐢繝寮€n喗鈷戠紒瀣儥閸庡繒绱掓径濠傤暢闁告帗甯掗~婵嬵敄閻愬瓨銇濇い銏℃瀹曨亪宕橀鍕劒闂傚倸鍊风粈渚€骞栭锔藉亱闁糕剝鐟ч惌鎾绘倵濞戞鎴﹀矗韫囨稒鐓熼柡鍌氱仢閹垿鏌¢崪浣稿⒋闁诡喗锕㈤幃娆戞崉鏉炵増鐫忛梻浣藉吹閸犳劗鎹㈤崼銉ヨ摕闁绘梻鍘ч崙鐘炽亜閹扳晛鐏╁┑顔芥礀閳规垿鎮╅顫濠电偞鎸婚崺鍐磻閹炬惌娈介柣鎰皺鏁堥梺绯曟杹閸嬫挸顪冮妶鍡楃瑨閻庢凹鍓涢埀顒佽壘椤︻垶鈥︾捄銊﹀磯濞撴凹鍨伴崜杈╃磽閸屾氨袦闁稿鎹囧缁樻媴閻熼偊鍤嬬紓浣割儐閸ㄥ墎缂撴禒瀣睄闁稿本绮庨悾鑸电節閵忥絽鐓愰柛鏃€娲滅划濠氬Ψ閳哄倻鍘电紓浣割儏濞硷繝顢撳Δ浣典簻閹兼番鍨哄畷宀勬煛瀹€瀣М闁糕晪绻濆畷妤呮晝閳ь剛绱炴繝鍌滄殾闁挎繂鐗滃Σ濠氭⒑瀹曞洨甯涙俊顐㈠暙椤曪綁骞橀钘夆偓鐑芥煕韫囨挻鎲搁柣顓燁殜濮婃椽鎳¢妶鍛咃綁鏌涢弬鐐叉噹缁躲倕鈹戦崒婧撳湱绮婚弻銉︾厪闊洤顑呴埀顒佹礉缁绘岸姊绘担鍛靛綊寮甸鍕闁荤喐鍣村ú顏勎у璺侯儑閸樺崬鈹戦悙鍙夘棡闁告梹娲熼幃姗€鍩¢崒銈嗩啍闂佺粯鍔曞鍫曞窗濡皷鍋撳▓鍨灓闁轰礁顭烽妴浣肝旈崨顓狅紲濠电姴锕ら崯鎶筋敊婢舵劖鈷掑ù锝呮啞閹牓鏌eΔ鈧Λ婵婃闂佽顔栭崰姘舵儗閹剧粯鐓曢柨鏃囶嚙楠炴劙鏌涚€n偅灏い顐g箞椤㈡鎷呯憴鍕伆婵犵數濮撮惀澶愬Χ閸曨偅鍎撻梻浣筋嚃閸n噣宕抽敐澶堚偓浣肝熺悰鈩冩杸闁诲函缍嗛崑鍛存偩閸洘鈷掑ù锝呮啞閹牊銇勮閸嬫捇姊洪悷鏉挎闁瑰嚖鎷�/闂傚倷绀侀幖顐λ囬锕€鐤炬繝濠傛噺瀹曟煡鏌涢幇鍏哥凹闁稿繑绮撻弻銈囩矙鐠恒劋绮垫繛瀛樺殠閸婃牜鎹㈠┑瀣棃婵炴垶甯炲﹢鍛攽閻愭彃鎮戦柛鏃€鐟╁濠氭晲婢跺á鈺呮煏婢跺牆鍔村ù鐘层偢濮婃椽宕妷銉ょ捕濡炪倖娲﹂崣鍐春閳ь剚銇勯幒鍡椾壕濠电姭鍋撻柛妤冨亹閺嬪秹鏌曡箛瀣仾妞ゎ偅娲樼换婵嬫濞戞艾顤€闁诲孩纰嶅銊╁焵椤掑倹鍤€閻庢凹鍘奸…鍨熼悡搴g瓘濠电偛妯婃禍婵嬪煕閹寸偑浜滈柟鏉垮绾捐法绱掗幇顓燁棃闁哄本绋撻埀顒婄秵閸嬪棙鏅堕鍌滅<闁稿本绋戝ù顔筋殽閻愬弶顥㈢€殿喖鐖奸獮鎰償椤斿吋娅� bjb@jiyifa.com 濠电姷鏁搁崑鐐哄垂閸洖绠板Δ锝呭暙绾惧鏌熼幆褏鎽犻柛娆忕箻閺屾洟宕煎┑鎰ч梺鍝勬媼閸撶喖骞冨鈧幃娆戞崉鏉炵増鐫忔俊鐐€曠换妤佺椤掑倹顫曢柟鎯х摠婵挳鏌涘┑鍕姢妞ゆ柨顦靛铏圭磼濡粯鍎撶紓浣介哺濞茬喖宕洪埀顒併亜閹哄棗浜惧┑鐘亾闂侇剙绉寸壕鍧楁煙鐎电ǹ校妞ゎ偅娲樼换婵嬫濞戝崬鍓伴柣搴㈣壘椤︿即濡甸崟顖氱闁瑰瓨绺鹃崑鎾诲及韫囧姹楅梺鍝勮閸庢煡宕愰崼鏇犲彄闁搞儯鍔嶇亸鐗堛亜閵壯冣枅闁哄矉绲介埞鎴﹀炊閳哄倸鍨遍柣搴ゎ潐濞叉ê顫濋妸鈺佺闁绘ǹ顕х粻鐢告煙閻戞ɑ鐓i柟顕嗙秮濮婂宕掑顑藉亾閸濄儮鍋撳銉ュ鐎规洘鍔欓獮瀣晝閳ь剟鎮為崹顐犱簻闁圭儤鍩婇弨濠氭倵濮樼偓瀚�