一、目标:
用五点法画函数 的图象.
二、重点难点:
重点是用五点法列表画函数画图;
难点是五点的确定.
三、过程:
【创设情境】
在物理学中,物体做简谐运动时,位移s和时间t的关系为
这里A是物体振动时离开平衡位置的最大距离,称为振动的振幅;往复振动一次所需的时间
称为这个振动的周期;单位时间内往复振动的次数
称为振动的频率; 称为相位,t=0时的相位 称为初相.
在物理和工程技术的许多问题中,经常会遇到形如 的函数,今天我们来探究函数 的图象与函数 的图象关系.
【自主学习 探索研究】
1.作函数 和 的图象 (学生用五点法列表画图)
010-10
010-10
描点画图,思考上述两函数的图象五点差异.
(函数 的五点横坐标可以看作函数 的图象上五点横坐标减去 而得.纵坐标不变)
2.作函数 的图象
(学生五点法列表画图)回答函数 的图象与函数 五点差异
思考:函数 的图象与函数 的图象有什么关系?
3.作函数 和 的图象
(学生五点法列表画图)回答上述两函数的图象关系? 图象上的五点与函数 五点差异.
5.函数 的图象并与函数 的图象比较之间的关系?
6.思考函数 的五点如何确定?
7.课堂练习
(1)用五点法画函数 的图象
(2)课本p.42.练习5
【提炼总结】
1. 用五点法画三角函数图象时,要先确定周期,再将周期四等份,找出五个关键点:1, , , ,,然后再列表画图;
2.作图时,要注意坐标轴刻度,x轴是实数轴,角一律用弧度制.
四、布置作业
1.修改并保留本节课列表画图所得图象;
本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaoyi/68333.html
相关阅读:函数概念的应用
闂佺粯顨呴悧濠傖缚閸喓鐝堕柣妤€鐗婇~鏍煥濞戞瑧顣叉繝鈧导鏉戞闁搞儜鍐╂殽闁诲海鎳撳﹢閬嶅极鏉堛劎顩查柟鐑樻磻缁挾绱撻崘鈺佺仼闁轰降鍊濋獮瀣偪椤栨碍顔囬梺鍛婄懄閸ㄨ偐娑甸埀顒勬煟濮樼厧娅欑紒杈ㄧ箘閹风娀濡烽敂鐣屸偓顕€鎮峰▎蹇撯偓濠氬磻閿濆棛顩烽柛娑卞墮閺佲晠鎮跺☉鏍у缂傚秵妫冮幊鎾诲川椤旇姤瀚虫繛瀛樼矋娴滀粙鍩€椤掆偓閸婄懓锕㈤幍顔惧崥婵炲棗娴烽惌宀勬煙缂佹ê濮冪紒璺虹仛缁岄亶鍩勯崘褏绀€闁诲孩绋掗敋闁稿绉剁划姘洪鍜冪吹闂佸搫鐗嗙粔瀛樻叏閻斿吋鏅悘鐐跺亹閻熸繈鏌熼弸顐㈠姕婵犫偓娓氣偓楠炲秹鍩€椤掑嫬瀚夊璺侯儐缂嶁偓闂佹寧绋戞總鏃傜箔婢舵劕绠ラ柟绋块椤庢捇鏌i埡鍏﹀綊宕h閳绘棃寮撮悙鍏哥矗闁荤姵鍔х徊濂稿箲閵忋倕违闁稿本鍑瑰ú銈夋煕濞嗘劕鐏╂鐐叉喘瀵敻顢楅崒婊冭闂佸搫鐗嗛ˇ鎵矓閸︻厸鍋撳顒佹拱濠德や含閹噣顢樺┑瀣當闂佸搫顧€閹凤拷/闁哄鏅滅换鍐兜閼稿灚浜ゆ繝闈涒看濞兼劙鏌i妸銉ヮ仼闁哥偛顕埀顒€婀卞▍銏㈡濠靛牊瀚氱€瑰嫭婢樼徊娲⒑椤愶紕绐旈柛瀣墬缁傛帡骞嗛弶鎸庮啎 bjb@jiyifa.com 婵炴垶鎸鹃崑鎾存叏閵堝鏅悘鐐跺亹椤忚京绱撴担鍝ョ闁绘搫绱曢埀顒€婀遍崕鎴犳濠靛瀚夋い鎺戝€昏ぐ鏌ユ倶韫囨挻顥犻柣婵囩洴瀹曟氨鎷犻幓鎺斾患闂傚倸瀚ㄩ崐鎴﹀焵椤掑﹥瀚�