一、整体法与隔离法的应用
图1
例1 如图1所示,箱子的质量M=5.0 kg,与水平地面的动摩擦因数μ=0.22.在箱子顶处系一细线,悬挂一个质量m=0.1 kg的小球,箱子受到水平恒力F的作用,使小球的悬线与竖直方向的摆角θ=30°,试求力F的大小.(g取10 m/s2)
图2
例2 在光滑的水平面上放有一斜劈M,M上又有一物块m,如图2所示,力F作用在斜劈上,若要保持m与M相对静止,F至少要为多大?(各接触面均光滑,斜面倾角为θ)
二、临界和极值问题
例3 如图3所示,两个物块A和B叠放在光滑水平面上,已知A的质量mA=4 kg,
图3
B的质量mB=5 kg,在A上施加一个水平力FA.当FA=20 N时,A、B间恰好开始发生相对运动.在撤去FA后,求:若要保持A、B间相对静止,对B物块能施加的最大水平力为多大?
三、牛顿运动定律的综合应用
例4 科研人员乘气球进行科学考察.气球、座舱、压舱物和科研人员的总质量为990 kg.气球在空中停留一段时间后,发现气球因漏气而下降,及时堵住.堵住时气球下降速度为1 m/s,且做匀加速运动,4 s内下降了12 m.为使气球安全着陆,向舱外缓慢抛出一定的压舱物.此后发现气球做匀减速运动,下降速度在5分钟内减少了3 m/s.若空气阻力和泄漏气体的质量均可忽略,重力加速度g=9.89 m/s2,求抛掉的压舱物的质量.
图4
例5 在倾斜角为θ的长斜面上,一带有风帆的滑块从静止开始沿斜面下滑,滑块(连同风帆)的质量为m,滑块与斜面间的动摩擦因数为μ、风帆受到向后的空气阻力与滑块下滑的速度v大小成正比,即F阻=kv.滑块从静止开始沿斜面下滑的v-t图象如图4所示,图中的倾斜直线是t=0时刻速度图线的切线.
(1)由图象求滑块下滑的最大加速度和最大速度的大小;
(2)若m=2 kg,θ=37°,g=10 m/s2,求出μ和k的值.(sin 37°=0.6,cos 37°=0.8)
【即学即练】
1.在国际单位制中,功率的单位“瓦”是导出单位,“瓦”用基本单位表示正确的是( )
A.焦/秒 B.牛?米/秒
C.千克?米2/秒2 D.千克?米2/秒3
图5
2.如图5所示,一物体静止在倾斜的木板上,物体与木板之间相互作用力的对数是( )
A.1对
B.2对
C.3对
D.4对
图6
3.刹车距离是衡量汽车安全性能的重要参数之一.如图6所示,图线1、2分别是甲、乙两辆汽车的刹车距离s与刹车前的车速v的关系曲线,已知在紧急刹车过程中,车与地面间是滑动摩擦.据此可知,下列说法中正确的是( )
A.甲车与地面间的动摩擦因数较大,甲车的刹车性能好
B.乙车与地面间的动摩擦因数较大,乙车的刹车性能好
C.以相同的车速开始刹车,甲车先停下来,甲车的刹车性能好
D.甲车的刹车距离s随刹车前的车速v变化快,甲车的刹车性能好
图7
4.如图7所示,一物块静止在斜面上,现用一个水平力F作用于物块,当力的大小从零开始逐渐增加到F时, 而物块仍能保持静止,以下说法正确的是( )
A.物体受到的静摩擦力一定增大
B.物块所受合力增大
C.物块受到的静摩擦力有可能增大,也有可能减小
D.物块受到斜面的作用力增大
5.木块静止在倾角为θ的斜面上,那么木块对斜面的作用力的方向( )
A.沿斜面向下
B.垂直斜面向下
C.沿斜面向上
D.竖直向下
图8
6.某人在地面上用弹簧秤称得其体重为490 N.他将弹簧秤移至电梯内称其体重,t0至t2时间段内,弹簧秤的示数如图8所示,电梯进行的v-t图可能是(取电梯向上运动的方向为正)( )
7.如图9所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个质量为20 kg的箱子匀速前进,如图9甲所示,箱子与水平地面间的动摩擦因数为μ=0.40.求:
图9
(1)推力F的大小;
(2)若该人不改变力F的大小,只把力的方向变为与水平方向成30°角斜向上去拉这个静止的箱子,如图乙所示,拉力作用2.0 s后撤去,箱子最多还能运动多长距离.(g取10 m/s2)
图10
8.一个质量为m的小球B,用两根等长的细绳1、2分别固定在车厢的A、C两点,已知两轻绳拉直时,如图10所示,两轻绳与车厢前壁的夹角均为45°.试求:
(1)当车以加速度a1=g/2向左做匀加速直线运动时,两轻绳1、2的拉力.
(2)当车以加速度a2=2g向左做匀加速直线运动时,两轻绳1、2的拉力.
参考答案
知识体系构建
运动状态 质量 矢量 瞬时 向下 < 向上 > = =
解题方法探究
例1 40.7 N
解析 对小球进行受力分析,小球受悬线的拉力FT和重力mg,如图甲所示,
则FTsin θ=maFTcos θ=mg
对整体进行受力分析,如图乙所示.
此时细绳对箱子的拉力和小球受的拉力对整体而言是内力,因此不必考虑:则由牛顿第二定律得F-μ(M+m)g=(M+m)a,
即F=(M+m)(μg+a)=(M+m)g(μ+tan θ)≈40.7 N.
例2 (M+m)gtan θ
解析 若m、M保持相对静止,则两者运动情况相同.对m、M所组成的整体进行受力分析,如图甲所示,根据牛顿第二定律可知F=(m+M)a.①
以m为研究对象,进行受力分析,如图乙所示,根据牛顿第二定律可得
Fx=FN′?sin θ=max=ma.②
Fy=FN′?cos θ-mg=may=0.③
由②③可得a=gtan θ.代入①中得F=(m+M)gtan θ.
例3 25 N
解析 依题意,在FA的作用下,A、B一起加速运动有相等的加速度.当A、B开始发生相对运动时,A、B系统的加速度为最大加速度,A对B的静摩擦力fAB即为最大静摩擦力.由牛顿第二定律的比例式有,FA/(mA+mB)=fAB/mB.①
当对B施加一最大水平力FB时,A、B仍以共同的加速度运动,且这一加速度也为最大加速度,故B对A的静摩擦力fBA也为最大静摩擦力,即有,
fBA=fAB.②
同理可列出比例式:FB/(mA+mB)=fBA/mA.③
由①②③解得:FB=mBFA/mA=25 N.
例4 101 kg
解析 设堵住漏洞后,气球的初速度为v0,所受的空气浮力为F浮,气球、座舱、压舱物和科研人员的总质量为m,由牛顿第二定律得mg-F浮=ma①
式中a是气球下降的加速度.以此加速度在时间t内下降了h,则h=v0t+12at2②
当向舱外抛掉质量为m′的压舱物后,有F浮-(m-m′)g=(m-m′)a′③
式中a′是抛掉压舱物后气球的加速度.由题意,此时a′方向向上,Δv=a′Δt.④
式中Δv是抛掉压舱物后气球在Δt时间内下降速度的减少量.
由①③得m′=ma+a′g+a′⑤
将题设数据m=990 kg,v0=1 m/s,t=4 s,h=12 m,Δt=300 s.
Δv=3 m/s,g=9.89 m/s2代入②④⑤式得m′=101 kg.
例5 (1)3 m/s2 2 m/s (2)μ=0.375 k=3 N?s/m
解析 (1)由题图可知滑块做加速度减小的加速运动,最终可达最大速度vm=2 m/s,t=0时刻滑块的加速度最大,即为v-t图线在O点的切线的斜率:a=v1-v0t1=3 m/s-01 s=3 m/s2
(2)对滑块受力分析如图所示,由牛顿第二定律得mgsin θ-F阻-f=ma
又f=μFN,FN=mgcos θ,F阻=kv,联立以上各式得mgsin θ-μmgcos θ-kv=ma
由(1)知,将v0=0,a0=3 m/s2和vm=3 m/s,a=0代入上式可得μ=0.375,k=3 N?s/m
即学即练
1.D 2.B 3.B 4.CD
5.D [木块受力如图所示,其中FN、f分别为斜面对木块的支持力和摩擦力,木块受到三个力的作用处于平衡状态,则FN、f的合力与G等大、反向,即方向竖直向上.由牛顿第三定律可知木块对斜面的作用力与FN、f的合力等大、反向,方向竖直向下.]
6.AD [t0~t1时间内,弹簧秤的示数小于人的重力,人处于失重状态,有向下的加速度;t2~t3时间内,弹簧秤的示数大于人的重力,人处于超重状态,有向上的加速度;t1~t2时间内,弹簧秤的示数等于人的体重,加速度为0,则B、C选项不正确,A、D正确.]
7.(1)120 N (2)2.88 m
解析 (1)设地面对箱子的支持力和摩擦力分别为FN、f.取箱子为研究对象,受力如图甲所示.
由牛顿第二定律得
水平方向 F?cos θ=f
竖直方向 FN=mg+F?sin θ,又f=μFN
联立上式解得F≈120 N
(2)取箱子为研究对象,受力分析如图乙所示
由牛顿第二定律得
水平方向 F?cos θ-f1=ma1
竖直方向 FN1+Fsin θ=mg
又f1=μFN1
拉力作用2 s末箱子的速度v1=a1t
撤去力F后,箱子的受力分析如图丙所示
由牛顿第二定律得 f2=ma2 又f2=μFN2,FN2=mg
设此过程箱子运动的距离为s则由运动学公式得s=v212a2
联立以上各式解得 s=2.88 m
8.(1)F1=52mg F2=0
(2)F1′=322mg F2′=22mg
解析 取小球为研究对象,设细绳1、2对小球的拉力分别为F1,F2,对小球受力分析,如图甲所示
水平方向上 22F1+22F2=ma
竖直方向上 22F1-mg-22F2=0
联立得F1=mg+ma2,F2=ma-mg2
由此分析知,当车以a=g向左做匀加速直线运动时,细绳2刚好伸直,且对球没有作用力.
(1)当a1=g2时,细绳2的拉力为0,受力分析如图乙
则F1=F2合+?mg?2=52 mg
(2)当a2=2g时,细绳2上已有拉力则
有F1′=mg+ma2=3 22mg
本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaoyi/73796.html
相关阅读:描述圆周运动
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛鎾茬閸ㄦ繃銇勯弽顐杭闁逞屽墮閸熸潙鐣烽妸褉鍋撳☉娅亝绂嶆潏銊х瘈闁汇垽娼у瓭闂佺ǹ锕ら顓犳閹炬剚娼╅柤鍝ユ暩閸樺崬顪冮妶鍡楀闁稿﹥娲熷鎼佸籍閸喓鍘藉┑鐘绘涧濡盯宕洪敐澶嬬厸鐎光偓鐎n剙鍩岄柧缁樼墵閺屽秷顧侀柛鎾跺枛楠炲啳顦崇紒缁樼箞瀹曡埖顦版惔锝傛(闂傚倷绀侀幖顐ょ矙娓氣偓瀹曘垺绂掔€n偄浜楅梺闈涱檧婵″洨绮绘ィ鍐╃厵閻庣數枪娴犙囨煙閸愬弶鍣洪柕鍥у閺佹劙宕ㄩ鐘荤崜缂傚倷鑳剁划顖滄崲閸儱鏄ラ柍褜鍓氶妵鍕箳瀹ュ浂妲銈嗘礋娴滃爼寮婚埄鍐ㄧ窞閻庯綆浜炴禒绋款渻閵堝啫鍔滅紒璇茬墕椤繐煤椤忓嫮顔愰梺缁樺姈瑜板啯淇婅濮婃椽宕ㄦ繝鍌氼潊闂佸搫鎳忕划宀勫煝閹惧顩烽悗锝庡亐閹锋椽鏌i悩鍙夋悙鐎殿喖鐖奸獮鎴︽晲婢跺鍘甸梺鎯ф禋閸嬪懐浜搁銏$叆闁哄洦锚閻忔煡鏌$仦鑺ヮ棞妞ゆ挸銈稿畷銊╊敊闁款垰浜炬い鎺戝閻撴稑顭跨捄鐚村姛濠⒀勫灴閺屾盯寮崸妤€寮伴梺闈涙閹虫ê顕f繝姘ㄩ柨鏃€鍎抽獮宥夋⒒娴h櫣甯涢柛銊﹀劶閹筋偆绱掗悙顒€绀冪€规洜鏁稿Σ鎰板箳濡ゅ﹥鏅╅梺鍏间航閸庨亶寮冲Δ鍐=濞达絼绮欓崫娲煙閻熺増鎼愰柣锝呭槻椤粓鍩€椤掑嫬鏄ラ柍鈺佸暞婵挳寮堕悙闈涱暭闁稿鎳樺濠氬磼濞嗘劗銈板┑鈩冦仠閸旀垵顫忛挊澶樺悑濠㈣泛锕﹂敍娆忊攽閻樼粯娑фい鎴濇搐閻e灚绗熼埀顒勫箖濡ゅ懏鏅查幖绮瑰墲閻忓秹姊虹粙娆惧剾濞存粍绻堟俊鐢稿礋椤栨艾鍞ㄩ梺闈浤涚仦鐐啇濠碉紕鍋戦崐鏍蓟閵娿儍娲敇閻戝棙缍庡┑鐐叉▕娴滄粌顔忓┑鍡忔斀闁绘ɑ褰冮顏堟煕閿濆骸寮慨濠冩そ楠炴牠鎮欓幓鎺濇綂闂備胶枪椤戝棝宕濋弴銏犵叀濠㈣埖鍔栭崑銊х磼鐎n厽纭堕柛鏃撶畱椤啴濡堕崱妤冪懆闁诲孩鍑归崣鍐箖閿熺姵鍋勯柛娑橈工瀵灝鈹戦埥鍡楃仯闁告鍛殰闁煎摜鏁哥粻楣冩煕濞戝崬鏋ら柟鍐叉噽缁辨帗娼忛妸銉х懖濠电偟鍘х换妯讳繆濮濆矈妲鹃梺浼欑到閵堢ǹ顫忔ウ瑁や汗闁圭儤绻冮ˉ鏍ㄧ節閻㈤潧浜归柛瀣尰缁绘繄鍠婃径宀€锛熼梺绋跨箲閿曘垹顕i锕€纾奸柣鎰綑娴犲ジ鏌h箛鏇炰户閺嬵亜霉濠婂懎浜鹃柕鍥у瀵潙螖閳ь剚绂嶆ィ鍐┾拺閻犲洠鈧櫕鐏堥梺鎼炲灪閻擄繝宕洪姀鈩冨劅闁靛牆娲ㄩ弶鎼佹⒑閸︻叀妾搁柛銊у缁傚秹骞嗚閺€浠嬫煟濡櫣鏋冨瑙勧缚閻ヮ亪骞嗚閻撳ジ鏌$仦璇插闁宠鍨垮畷鍗烆潨閸℃﹫楠忓┑锛勫亼閸婃劙寮插┑瀣婵せ鍋撶€殿喛顕ч埥澶娢熼柨瀣垫綌闂備礁鎲¢〃鍫ュ磻濞戭澁缍栭柍鍝勬噺閳锋垿寮堕悙鏉戭€滄い鏂款樀閺岋繝宕ㄩ姘f瀰濡ょ姷鍋涢崯浼村箲閸曨厽鍋橀柍鈺佸枤濞兼棃姊绘担鍛婃儓閻犲洨鍋ゅ畷姗€宕滆閸嬫挻娼忛埡鍐紳闂佺ǹ鏈懝楣冨焵椤掆偓閹芥粎鍒掗弮鍫燁棃婵炵娅曢惄顖氱暦濮椻偓椤㈡瑩鎳栭埡鍐╃€梻鍌欐祰椤鐣峰鈧、姘愁槻妞ゆ柨绻愰埞鎴﹀炊閵夈倗鐩庨梻浣告惈閸燁偄煤閵堝牜鏆遍梻浣筋嚙鐎涒晜绌遍崫鍕ㄦ瀺闁哄洨濮靛畷鍙夌箾閹寸偛鐒归柛瀣尭閳藉鈻庣€n剛绐楅梻浣规た閸樺ジ顢栭崨瀛樼畳婵犵數濮磋墝闁稿鎸剧槐鎺楊敊閻e本鍣伴悗瑙勬礃濡炰粙宕洪埀顒併亜閹哄秹妾峰ù婊勭矒閺岀喖宕崟顒夋婵炲瓨绮撶粻鏍ь潖閾忓湱鐭欓柛鏍も偓鍐差潬闂備胶顢婂▍鏇㈠箲閸ヮ剙鏋侀柛鎰靛枛椤懘鏌曢崼婵囧櫧妞ゆ挾鍘ч—鍐Χ閸℃ǚ鎷归梺绋块閸熷潡鎮鹃悜钘壩ㄩ柕澶堝灪閺傗偓闂備胶绮崝鏇烆嚕閸泙澶娾堪閸曨厾顔曢柣搴f暩鏋柛妯绘尦閺岀喖顢涘鍐差伃闂佷紮绲剧换鍫濈暦閻旂⒈鏁嗛柛灞捐壘缁犮儳绱撻崒姘偓鎼佸磹閻戣姤鍊块柨鏇炲€归弲顏勨攽閻樻剚鍟忛柛鐘崇墵瀹曨垶骞嶉绛嬫綗闂佸湱鍎ゅ鐟扮暦婢舵劖鐓i煫鍥ㄧ▓閸嬫挸鈽夊鍨涙敽缂傚倸鍊搁崐椋庣矆娓氣偓閹矂宕掑☉姘兼锤闂佸壊鍋呭ú鏍及閵夆晜鐓曢柡鍥ュ妼閻忕姷绱掗埀顒勫礃椤忓懎鏋戦棅顐㈡处濞叉粓鎯岄崱娑欑厓鐟滄粓宕滈悢濂夋綎闁惧繗顫夌€氭岸鏌熺紒妯轰刊闁告柨顦辩槐鎾存媴閸撴彃鍓遍柣銏╁灲缁绘繂顕i銈傚亾閿濆骸鏋熼柍閿嬪灩缁辨帞鈧綆鍋掗崕銉╂煕鎼达紕绠崇紒杈ㄥ笚瀵板嫭绻濋崒銈嗘闂備礁鎲$敮妤冩暜閹烘缍栨繝闈涱儛閺佸嫰鏌i幇顒傛憼闁靛洦绻冮妵鍕閳╁喚妫冮悗瑙勬处娴滎亜鐣峰鈧、鏃堝礋椤掆偓閸旀帡姊婚崒姘偓鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曢梻浣虹《閸撴繈鎮疯閹矂骞樼紒妯衡偓鍨箾閹寸儐浼嗛柟杈剧畱閻鐓崶銊р姇闁绘挾鍠栭弻锟犲磼濮樺彉铏庨梺璇″枟閸ㄥ潡寮婚敓鐘叉そ濞达絿枪閳峰姊虹拠鈥虫灍闁挎洏鍨介獮鍐ㄢ枎閹寸偛纾柡澶屽仧婢ф鎯堣箛娑欌拻濞达綀妫勯崥褰掓煕閻樺啿濮夐柟骞垮灲瀹曞ジ濡烽妷銊︽啺闂備胶绮濠氬储瑜斿畷娆撴偐閻愭垝绨婚梺瑙勫閺呮盯鎮橀埡浣叉斀妞ゆ棁濮ょ粈鈧梺瀹狀潐閸ㄥ潡骞冮埡鍜佹晝妞ゎ偒鍘奸ˉ姘節閻㈤潧浠﹂柟绋款煼瀹曟椽宕橀鑲╋紱闂佸湱鍋撻幆灞解枔娴犲鐓熼柟閭﹀灠閻ㄦ椽寮崼銉︹拺缂侇垱娲橀弶褰掓煕鐎n偅灏い顏勫暣婵″爼宕卞Δ鍐噯闂佽瀛╅崙褰掑礈濞戙垹鐒垫い鎺嶆祰婢规ɑ銇勯敂璇茬仸闁炽儻濡囬幑鍕Ω閿曗偓绾绢垱绻涢幘鏉戝毈闁搞劋鍗冲畷婊勬綇閳哄啰锛濋梺绋挎湰濮樸劏鈪甸梻浣呵归鍡涘箲閸パ屾綎缂備焦蓱婵挳鏌i悢鐓庝喊闁搞倕顑囩槐鎾存媴閸撴彃鍓遍梺鎼炲妼婢у海绱撻幘瀵割浄閻庯綆浜為惈鍕⒑缁嬫寧婀扮紒顔奸叄閹箖鎳滈悽鐢电槇闂侀潧楠忕徊浠嬫偂閹扮増鐓曢柡鍐e亾婵炲弶绮庨崚鎺撶節濮橆儵銊╂煃閸濆嫬鈧宕㈤悽鐢电=濞达絽澹婇崕蹇旂箾绾绡€妞ゃ垺鎸歌灃濞达絽鍚€缁ㄥ鏌熼崗鑲╂殬闁搞劌鎼悾宄扮暆閸曨剛鍘搁悗鍏夊亾閻庯綆鍓涜ⅵ闂備胶纭堕弲顏嗘崲濠靛棛鏆︽俊銈呮噺閺呮繈鏌嶈閸撴稓妲愰悙瀵哥瘈闁稿本绮嶅▓楣冩⒑閹稿海绠撻柣妤佺矊鍗卞┑鐘崇閳锋垹鈧娲栧ú銊ф暜濞戞瑤绻嗘い鎰╁灩閺嗘瑦銇勯弴顏嗙М妤犵偞锕㈤、娆撴寠婢跺棗浜鹃柣鎴eГ閻撴洟鐓崶銊﹀鞍闁瑰弶鎮傞弻锝夘敇閻曚焦鐤佸┑顔硷攻濡炰粙骞婇敓鐘参ч柛娑樻嫅缂嶄線寮诲☉銏犳闁绘劕寮堕崳鍦磼闊彃鈧洟鍩為幋锕€纾兼繝褎鎸稿﹢杈╁垝婵犳艾钃熼柕澶涘閸橆亪妫呴銏℃悙妞ゆ垵鎳橀崺鈧い鎺嶇劍缁€澶岀磼缂佹ê鍝烘慨濠勭帛閹峰懘宕ㄩ棃娑氱Ш鐎殿喚鏁婚、妤呭礋椤愩値妲遍梻浣藉吹閸犳劙宕抽弶鎳ㄦ椽顢旈崟骞喚鐔嗛悹杞拌閸庢垿鏌涘Ο鍝勮埞闁宠鍨块幃娆撳矗婢舵ɑ锛侀梻浣告啞濮婄懓煤閻旂厧绠栨慨妞诲亾闁糕晪绻濆畷鎺楀Χ閸♀晛鏅梻鍌欒兌缁垶宕濋弴鐑嗗殨闁割偅娲栫粣妤佷繆椤栨氨姣為柛瀣尭閳绘捇宕归鐣屼壕闂備浇妗ㄧ粈渚€鈥﹂悜钘壩ュù锝堝€介弮鍫濆窛妞ゆ挾濯寸槐鍙夌節閻㈤潧孝闁挎洏鍊濆畷顖炲箮缁涘鏅╂繝銏e煐閸旀牠鍩涢幒鎳ㄥ綊鏁愰崨顔兼殘闂佽鍨伴悧鎾诲蓟閿濆憘鏃堝焵椤掆偓铻炴繝闈涳攻椤ャ倝姊绘担绛嬫綈妞ゆ梹鐗犲畷鏉款潩閼搁潧鍓归梺鐟板⒔缁垶鎮¢弴銏$叆闁哄啫娴傞崵娆愵殽閻愭潙濮嶉柡灞剧〒閳ь剨缍嗛崑鍛焊椤撶喆浜滄い鎰剁悼缁犵偞銇勯姀鈽嗘畷闁瑰嘲鎳愰幉鎾礋椤愵偂绱楁繝鐢靛Х閺佸憡鎱ㄩ幘顔藉剦濠㈣埖鍔曞洿闂佸憡娲﹂崑鍛村磿閹剧粯鈷掑ù锝囩摂閸ゅ啴鏌涢敐搴℃珝鐎规洘濞婇弫鎰緞閸艾浜惧ù锝堝€介悢鐑樺仒闁斥晛鍟弶鎼佹⒑鐠囨彃鍤辩紓宥呮瀹曟垿宕ㄧ€涙ê浠奸梺鍓插亝濞叉﹢鍩涢幒鎳ㄥ綊鏁愰崨顔兼殘闂佽鍨伴悧濠囧Φ閸曨噮妲烽梺绋款儐閹瑰洤顫忓ú顏呭仭闁哄瀵ч鈧梻浣烘嚀閸ゆ牠骞忛敓锟�/闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曚綅閸ヮ剦鏁冮柨鏇楀亾闁汇倗鍋撶换婵囩節閸屾稑娅ら悗瑙勬礃閻擄繝寮诲☉銏犵疀闁稿繐鎽滈崙褰掓⒑缁嬭法绠茬紒顔芥崌瀵濡堕崶鈺冪厯闁荤姵浜介崝瀣垝閸偆绠鹃悗娑櫭▓鐘绘煕婵犲啰澧遍柟骞垮灩閳规垹鈧綆鍋掑Λ鍐ㄢ攽閻愭潙鐏﹂悽顖滃仜閿曘垽宕ㄩ娑欐杸闂佺粯鍔栬ぐ鍐箖閹达附鐓曢柡鍐e亾闁荤啿鏅涢锝嗙節濮橆厽娅滄繝銏f硾璋╅柍鍝勬噺閻撳繐顭跨捄铏瑰闁告梹娼欓湁闁绘ê鐪伴崑銏℃叏婵犲啯銇濈€规洦鍋婃俊鐑藉Ψ閵堝洦宕熷┑锛勫亼閸婃牕煤閿曞倸鐭楅柛鎰靛枛閺勩儵鏌嶈閸撴岸濡甸崟顖氱闁糕剝銇炴竟鏇熺節閻㈤潧袥闁稿鎹囬弻娑樜旈崘銊ゆ睏闂佸搫顑呯粔褰掑蓟閺囷紕鐤€閻庯綆浜炴禒鎯ь渻閵堝骸浜濇繛鍙夅缚閹广垹鈹戠€n偒妫冨┑鐐村灦閼归箖路閳ь剟姊虹拠鎻掝劉缁炬澘绉撮~婵嬪Ω閳轰胶鍔﹀銈嗗笒閸婂綊宕甸埀顒勬煟鎼淬垹鍤柛妯恒偢閳ワ箓宕归銉у枛閹剝鎯旈敐鍥╂憣濠电姷鏁搁崑娑樜熸繝鍐洸婵犻潧顑呴悡鏇㈡煙鐎电ǹ浜煎ù婊勭矒閺岀喖寮堕崹顕呮殺缂佺偓宕樺▔鏇犳閹烘绠涙い鎾跺櫏濡啴姊洪崫鍕拱缂佸鎹囬崺鈧い鎺戯功缁夌敻鏌涚€n亝顥為柡鍛埣椤㈡宕掑⿰鍜冪床闂備胶枪閺堫剛绮欓幋婢濆綊顢欑粵瀣啍闂佺粯鍔曞鍫曀夐姀鈶╁亾濞堝灝鏋涢柣鏍с偢閻涱噣骞囬鐔峰妳濡炪倖鏌ㄩ崥瀣枍閿燂拷 bjb@jiyifa.com 濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵婢樿灃闁挎繂鎳庨弳娆戠棯閹岀吋闁哄瞼鍠栭獮鍡氼槾闁圭晫濞€閺屾稑鈻庤箛鏇狀啋闂佸搫鏈ú鐔风暦閻撳簶鏀介柟閭﹀帨瑜斿娲传閸曨剙顎涢梺鍛婃尵閸犳牠鐛崘顭戞建闁逞屽墴楠炲啫鈻庨幋鐐茬/闁哄鍋熸晶妤呮儓韫囨柧绻嗛柣鎰典簻閳ь剚娲滈幑銏犖旀担渚锤濡炪倖甯掗崐褰掞綖閺囥垺鐓欓柟顖嗗懏鎲兼繝娈垮灡閹告娊寮诲☉妯锋斀闁告洦鍋勬慨銏狀渻閵堝棙鐓ユい锕傛涧椤繘鎼归崷顓狅紲濠碘槅鍨崇划顖炲磿閹惧墎纾藉ù锝勭矙閸濈儤绻涢懠顒€鏋涚€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熼崫鍕棞濞存粍鍎抽埞鎴︽偐椤愵澀澹曢梻鍌欑贰閸撴瑧绮旂€电ǹ顥氶柛褎顨嗛悡娆撴倵閻㈢櫥瑙勭墡婵$偑鍊ら崑鍛哄Ο鍏煎床婵犻潧顑嗛ˉ鍫熺箾閹存繂鑸归柛鎾插嵆閺岋絾鎯旈姀锝咁棟濡炪倧缂氶崡铏繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊洪悷鎵憼缂佹椽绠栧畷鎴﹀箻鐠囨彃寮烽棅顐㈡搐椤戝嫬效濡ゅ懏鈷戦柛婵嗗椤箓鏌涙惔銏㈠弨鐎规洘鍔欏畷濂稿即閻樻彃绲奸梻浣规偠閸庮垶宕濆鍥︾剨闁绘鐗勬禍婊堟煏婢诡垰鍟犻弸鍛存⒑閸濆嫮鐒跨紒韫矙閸╃偤骞嬮敃鈧悙濠囨煃閸濆嫬鈧悂宕归柆宥嗙厽閹兼番鍊ゅḿ鎰箾閸欏顏堬綖濠靛惟闁宠桨鑳堕鍡涙⒑缂佹〒褰掝敋瑜忕划濠氭偨閸涘﹦鍘甸梺缁樺灦钃遍柣鎿勭秮閺岀喖顢氶崱娆懶滃┑顔硷工椤嘲鐣烽幒鎴僵妞ゆ垼妫勬禍楣冩煕濠靛嫬鍔楅柛瀣尭椤繈濡烽妷銉綆闁诲氦顫夊ú姗€宕濆▎鎾跺祦閻庯綆鍠楅弲婵嬫煃瑜滈崜鐔煎箖閻愬搫鍨傛い鎰С缁ㄥ姊洪崷顓炲妺闁糕晛锕銊︾節濮橆厼鈧灚鎱ㄥΟ鐓庝壕閻庢熬鎷�