空间几何体的体积

编辑: 逍遥路 关键词: 高一 来源: 高中学习网


总 课 题空间几何体的表面积和体积总课时第17课时
分 课 题空间几何体的体积(二)分课时第 2 课时
目标初步掌握求体积的常规方法,例如割补法,等积转换等.
重点难点割补法,等积转换等方法的运用.
?引入新课
1.如图,在三棱锥 中,已知 , , ,
,且 .求证:三棱锥 的体积为 .

2.一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果将冰淇淋全部放入杯中,
能放下吗?


?例题剖析
例1  将半径分别为 、 、 的三个锡球熔成一个大锡球,
求这个大锡球的表面积.


?巩固练习
1.两个球的体积之比为 ,则这两个球的表面积之比是_____________________.
2.若两个球的表面积之差为 ,两球面上两个大圆周长之和为 ,则这两球
的半径之差为_____________________________.
3.如果一个圆柱和一个圆锥的底面直径和高都与球的直径相等.
求证:圆柱、球、圆锥体积的比是 .

?课堂小结
割补法,等积转换等方法的运用.
?课后训练
一 基础题
1.一个圆锥的底面半径和一个球的半径相等,体积也相等,则它们的高度之比为______.

2.球面面积膨胀为原来的两倍,其体积变为原来的______________________倍.

3.正方体的全面积为 ,一个球内切于该正方体,那么球的体积是________ .


4.一个正方体的顶点都在球面上,它的棱长为 ,则这个球的表面积为_______ .

5.已知: 是棱长为 的正方体, , 分别为棱 与 的中
点,求四棱锥 的体积.


二 提高题
6.一个长、宽、高分别为 、 、 的水槽中有水 .现放入
一个直径为 的木球,如果木球的三分之二在水中,三分之一在水上,那么水是
否会从水槽中流出?

三 能力题
7.设 , , , 分别为四面体 中 , , , 的中点.
求证:四面体被平面 分成等积的两部分.

本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaoyi/77156.html

相关阅读:

闂佺粯顨呴悧濠傖缚閸喓鐝堕柣妤€鐗婇~鏍煥濞戞瑧顣叉繝鈧导鏉戞闁搞儜鍐╂殽闁诲海鎳撳﹢閬嶅极鏉堛劎顩查柟鐑樻磻缁挾绱撻崘鈺佺仼闁轰降鍊濋獮瀣偪椤栨碍顔囬梺鍛婄懄閸ㄨ偐娑甸埀顒勬煟濮樼厧娅欑紒杈ㄧ箘閹风娀濡烽敂鐣屸偓顕€鎮峰▎蹇撯偓濠氬磻閿濆棛顩烽柛娑卞墮閺佲晠鎮跺☉鏍у缂傚秵妫冮幊鎾诲川椤旇姤瀚虫繛瀛樼矋娴滀粙鍩€椤掆偓閸婄懓锕㈤幍顔惧崥婵炲棗娴烽惌宀勬煙缂佹ê濮冪紒璺虹仛缁岄亶鍩勯崘褏绀€闁诲孩绋掗敋闁稿绉剁划姘洪鍜冪吹闂佸搫鐗嗙粔瀛樻叏閻斿吋鏅悘鐐跺亹閻熸繈鏌熼弸顐㈠姕婵犫偓娓氣偓楠炲秹鍩€椤掑嫬瀚夊璺侯儐缂嶁偓闂佹寧绋戞總鏃傜箔婢舵劕绠ラ柟绋块椤庢捇鏌i埡鍏﹀綊宕h閳绘棃寮撮悙鍏哥矗闁荤姵鍔х徊濂稿箲閵忋倕违闁稿本鍑瑰ú銈夋煕濞嗘劕鐏╂鐐叉喘瀵敻顢楅崒婊冭闂佸搫鐗嗛ˇ鎵矓閸︻厸鍋撳顒佹拱濠德や含閹噣顢樺┑瀣當闂佸搫顧€閹凤拷/闁哄鏅滅换鍐兜閼稿灚浜ゆ繝闈涒看濞兼劙鏌i妸銉ヮ仼闁哥偛顕埀顒€婀卞▍銏㈡濠靛牊瀚氱€瑰嫭婢樼徊娲⒑椤愶紕绐旈柛瀣墬缁傛帡骞嗛弶鎸庮啎 bjb@jiyifa.com 婵炴垶鎸鹃崑鎾存叏閵堝鏅悘鐐跺亹椤忚京绱撴担鍝ョ闁绘搫绱曢埀顒€婀遍崕鎴犳濠靛瀚夋い鎺戝€昏ぐ鏌ユ倶韫囨挻顥犻柣婵囩洴瀹曟氨鎷犻幓鎺斾患闂傚倸瀚ㄩ崐鎴﹀焵椤掑﹥瀚�