高三数学必修五《正弦定理和余弦定理》教案

编辑: 逍遥路 关键词: 高中数学 来源: 高中学习网




【导语】高考竞争异常激烈,千军万马争过独木桥,秋天到了,而你正以凌厉的步伐迈进这段特别的岁月中。这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。为了助你一臂之力,逍遥右脑为你精心准备了《高三数学必修五《正弦定理和余弦定理》教案》助你金榜题名!

  教案【一】

  教学准备

  教学目标

  进一步熟悉正、余弦定理内容,能熟练运用余弦定理、正弦定理解答有关问题,如判断三角形的形状,证明三角形中的三角恒等式.

  教学重难点

  教学重点:熟练运用定理.

  教学难点:应用正、余弦定理进行边角关系的相互转化.

  教学过程

  一、复习准备:

  1.写出正弦定理、余弦定理及推论等公式.

  2.讨论各公式所求解的三角形类型.

  二、讲授新课:

  1.教学三角形的解的讨论:

  ①出示例1:在△ABC中,已知下列条件,解三角形.

  分两组练习→讨论:解的个数情况为何会发生变化?

  ②用如下图示分析解的情况.(A为锐角时)

  ②练习:在△ABC中,已知下列条件,判断三角形的解的情况.

  2.教学正弦定理与余弦定理的活用:

  ①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.

  分析:已知条件可以如何转化?→引入参数k,设三边后利用余弦定理求角.

  ②出示例3:在ΔABC中,已知a=7,b=10,c=6,判断三角形的类型.

  分析:由三角形的什么知识可以判别?→求角余弦,由符号进行判断

  ③出示例4:已知△ABC中,,试判断△ABC的形状.

  分析:如何将边角关系中的边化为角?→再思考:又如何将角化为边?

  3.小结:三角形解的情况的讨论;判断三角形类型;边角关系如何互化.

  三、巩固练习:

  3.作业:教材P11B组1、2题.

  教案【二】

  一)教材分析

  (1)地位和重要性:正、余弦定理是学生学习了平面向量之后要掌握的两个重要定理,运用这两个定理可以初步解决几何及工业测量等实际问题,是解决有关三角形问题的有力工具。

  (2)重点、难点。

  重点:正余弦定理的证明和应用

  难点:利用向量知识证明定理

  (二)教学目标

  (1)知识目标:

  ①要学生掌握正余弦定理的推导过程和内容;

  ②能够运用正余弦定理解三角形;

  ③了解向量知识的应用。

  (2)能力目标:提高学生分析问题、解决问题的能力。

  (3)情感目标:使学生领悟到数学来源于实践而又作用于实践,培养学生的学习数学的兴趣。

  (三)教学过程

  教师的主要作用是调控课堂,适时引导,引导学生自主发现,自主探究。使学生的综合能力得到提高。

  教学过程分如下几个环节:

  教学过程课堂引入

  1、定理推导

  2、证明定理

  3、总结定理

  4、归纳小结

  5、反馈练习

  6、课堂总结、布置作业

  具体教学过程如下:

  (1)课堂引入:

  正余弦定理广泛应用于生产生活的各个领域,如航海,测量天体运行,那正余弦定理解决实际问题的一般步骤是什么呢?

  (2)定理的推导。

  首先提出问题:RtΔABC中可建立哪些边角关系?

  目的:首先从学生熟悉的直角三角形中引导学生自己发现定理内容,猜想,再完成一般性的证明,具体环节如下:

  ①引导学生从SinA、SinB的表达式中发现联系。

  ②继续引导学生观察特点,有A边A角,B边B角;

  ③接着引导:能用C边C角表示吗?

  ④而后鼓励猜想:在直角三角形中成立了,对任意三角形成立吗?

  发现问题比解决问题更重要,我便是让学生体验了发现的过程,从学生熟悉的知识内容入手,观察发现,然后产生猜想,进而完成一般性证明。

  这个过程采用了不断创设问题,启发诱导的教学方法,引导学生自主发现和探究。

  第二步证明定理:

  ①用向量方法证明定理:学生不易想到,设计如下:

  问题:如何出现三角函数做数量积欲转化到正弦利用诱导公式做直角难点突破

  实践:师生共同完成锐角三角形中定理证明

  独立:学生独立完成在钝角三角形中的证明

  总结定理:师生共同对定理进行总结,再认识。

  在定理的推导过程中,我注重“重过程、重体验”培养了学生的创新意识和实践能力,教育学生独立严谨科学的求学态度,使情感目标、能力目标得以实现。

  在定理总结之后,教师布置思考题:定理还有没有其他证法?

  通过这样的思考题,发散了学生思维,使学生的思维不仅仅禁锢在教师的启发诱导之下,符合素质教育的要求。

  (3)例题设置。

  例1△ABC中,已知c=10,A=45°,C=30°,求b.

  (学生口答、教师板书)

  设计意图:①加深对定理的认识;②提高解决实际问题的能力

  例2△ABC中,a=20,b=28,A=40°,求B和C.

  例3△ABC中,a=60,b=50,A=38°,求B和C.其中①两组解,②一组解

  例3同时给出两道题,首先留给学生一定的思考时间,同时让两学生板演,以便两题形成对照、比较。

  可能出现的情况:两个学生都做对,则继续为学生提供展示的空间,让学生来分析看似一样的条件,为何①二解②一解情况,如果第二同学也做出两组解,则让其他学生积极参与评判,发现问题,找出对策。

  设计意图:

  ①增强学生对定理灵活运用的能力

  ②提高分析问题解决问题的能力

  ③激发学生的参与意识,培养学生合作交流、竞争的意识,使学生在相互影响中共同进步。

  (4)归纳小结。

  借助多媒体动态演示:图表

  使学生对于已知两边和其中一边对角,三角形解的情况有一个清晰直观的认识。之后让学生对题型进行归纳小结。

  这样的归纳总结是通过学生实践,在新旧知识比照之后形成的,避免了学生的被动学习,抽象记忆,让学生形成对自我的认同和对社会的责任感。实现本节课的情感目标。

  (5)反馈练习:

  练习①△ABC中,已知a=60,b=48,A=36°

  ②△ABC中,已知a=19,b=29,A=4°

  ③△ABC中,已知a=60,b=48,A=92°

  判断解的情况。

  通过学生形成性的练习,巩固了对定理的认识和应用,也便于教师掌握学情,以为教学的进行作出合理安排。

  (6)课堂总结,布置作业。


本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaozhong/1270010.html

相关阅读:高中数学如何快速有效地提高复习效率

闂備胶绮〃鍛存偋婵犲倴缂氶柛顐ゅ枔閻濆爼鏌eΔ鈧悧濠囷綖閺嶎厽鐓ユ繛鎴炵懅椤e弶绻濋埀顒佸閺夋垶顥濋梺鎼炲劀閸愨晜娈介梺璇叉捣閹虫挸锕㈤柆宥呮瀬閺夊牄鍔庨々鏌ユ煙閻戞ɑ纾荤紒顔芥尵缁辨捇宕橀埡浣轰患闂佽桨闄嶉崐婵嬬嵁鐎n喗鍋い鏍ㄧ椤斿洭姊洪崨濠勬噭闁搞劏鍋愬☉鐢稿焵椤掑嫭鐓熸慨妯煎帶濞呮瑧绱掓潏銊х畼闁归濞€婵$兘鏁傞悾灞稿亾椤曗偓閹嘲鈻庤箛鎾亾婵犳艾纾婚柨婵嗘椤╃兘鏌涘☉鍗炲闁轰讲鏅犻幃璺衡槈閺嵮冾瀱缂傚倸绉靛Λ鍐箠閹捐宸濇い鏃囧Г鐎氳櫕绻涚€涙ḿ鐭嬪ù婊€绮欓崺鈧い鎺嗗亾闁稿﹦鎳撻敃銏ゅ箥椤旀儳宕ュ┑鐐叉濞寸兘鎯屽畝鍕厵缂備焦锚婵啰绱掔捄铏逛粵缂佸矂浜堕崺鍕礃瑜忕粈鈧梺璇插缁嬫帡鏁嬮梺绋款儏缁夊墎鍒掑顑炴椽顢旈崪鍐惞闂備礁鎼悧鍡欑矓鐎涙ɑ鍙忛柣鏂垮悑閺咁剟鎮橀悙璺轰汗闁荤喐绻堥弻鐔煎几椤愩垹濮曞┑鐘亾濞撴埃鍋撴鐐茬Ч閸┾偓妞ゆ帒瀚€氬顭跨捄渚剱缂傚秮鍋撻梻浣瑰缁嬫垶绺介弮鍌滅當濠㈣埖鍔曠粻銉╂煙缁嬪潡顎楁い搴㈡崌閺岋綁鍩¢崗锕€缍婂畷锝堫槻闁崇粯妫冨鎾倷閸忓摜鐭楅梺鑽ゅУ閸斞呭緤婵傜ǹ绠查柕蹇嬪€曡繚闂佺ǹ鏈崙鐟懊洪妶澶嬬厱婵炲棙鍔曢悘鈺傤殽閻愬弶鍠樼€殿喚鏁婚、妤呭磼濠婂啳顔夐梻浣告惈閻楀棝藝閹殿喚鐭撻柛锔诲幐閸嬫挸顫濋浣规嫳婵犲痉銈勫惈闁诡噮鍣i、妯衡攽鐎n偅鐣堕梻浣告惈椤р偓闁瑰嚖鎷�/闂佸搫顦弲婊呮崲閸愵亝鍏滈柤绋跨仛娴溿倖绻濋棃娑掔湅婵炲吋鍔欓弻锝夊Ω閵夈儺浠奸梺鍝ュ仜椤曨參鍩€椤掆偓濠€鍗炩枍閵忋垺顫曟繝闈涚墛鐎氭氨鈧懓瀚妯煎緤濞差亝鈷戞い鎰剁磿缁愭棃鏌涚€n偆澧紒鍌涘浮楠炲棝寮堕幐搴晭 bjb@jiyifa.com 濠电偞鍨堕幐楣冨磻閹惧瓨鍙忛柕鍫濐槹閺咁剟鎮橀悙璺轰汗妞ゅ繗浜槐鎾存媴閸濄儳顔夐梺缁樻惈缁辨洟鍩€椤掆偓濠€閬嶅磿閹寸姵顫曟繝闈涱儏鐎氬銇勯幒鎴濃偓鏄忋亹閺屻儲鍊堕煫鍥ㄦ尰椤ョ娀鏌e┑鍥╂创鐎规洘姘ㄩ幏鐘诲箵閹烘柧鎮i梻鍌氬€哥€氥劑宕愰幋锕€鐒垫い鎺戯攻鐎氾拷