①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅ {0};⑥0∈{0}.
A.6个 B.5个
C.4个 D.3个及3个以下
解析:选C.①②⑤⑥正确.
2.已知集合A,B,若A不是B的子集,则下列命题中正确的是( )
A.对任意的a∈A,都有a∉B
B.对任意的b∈B,都有b∈A
C.存在a0,满足a0∈A,a0∉B
D.存在a0,满足a0∈A,a0∈B
解析:选C.A不是B的子集,也就是说A中存在不是B中的元素,显然正是C选项要表达的.对于A和B选项,取A={1,2},B={2,3}可否定,对于D选项,取A={1},B={2,3}可否定.
3.设A={x1<x<2},B={xx<a},若A B,则a的取值范围是( )
A.a≥2 B.a≤1
C.a≥1 D.a≤2
解析:选A.A={x1<x<2},B={xx<a},要使A B,则应有a≥2.
4.集合M={xx2-3x-a2+2=0,a∈R}的子集的个数为________.
解析:∵Δ=9-4(2-a2)=1+4a2>0,∴M恒有2个元素,所以子集有4个.
答案:4
1.如果A={xx>-1},那么( )
A.0⊆A B.{0}∈A
C.&empty,高中英语;∈A D.{0}⊆A
解析:选D.A、B、C的关系符号是错误的.
2.已知集合A={x-1<x<2},B={x0<x<1},则( )
A.A>B B.A B
C.B A D.A⊆B
解析:选C.利用数轴(图略)可看出x∈B⇒x∈A,但x∈A⇒x∈B不成立.
3.定义A-B={xx∈A且x∉B},若A={1,3,5,7,9},B={2,3,5},则A-B等于( )
A.A B.B
C.{2} D.{1,7,9}
解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.
4.以下共有6组集合.
(1)A={(-5,3)},B={-5,3};
(2)M={1,-3},N={3,-1};
(3)M=∅,N={0};
(4)M={π},N={3.1415};
(5)M={xx是小数},N={xx是实数};
(6)M={xx2-3x+2=0},N={yy2-3y+2=0}.
其中表示相等的集合有( )
A.2组 B.3组
C.4组 D.5组
解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.
5.定义集合间的一种运算“*”满足:A*B={ωω=xy(x+y),x∈A,y∈B}.若集合A={0,1},B={2,3},则A*B的子集的个数是( )
A.4 B.8
C.16 D.32
解析:选B.在集合A和B中分别取出元素进行*的运算,有0•2•(0+2)=0•3•(0+3)=0,1•2•(1+2)=6,1•3•(1+3)=12,因此可知A*B={0,6,12},因此其子集个数为23=8,选B.
6.设B={1,2},A={xx⊆B},则A与B的关系是( )
A.A⊆B B.B⊆A
C.A∈B D.B∈A
解析:选D.∵B的子集为{1},{2},{1,2},∅,
∴A={xx⊆B}={{1},{2},{1,2},∅},∴B∈A.
7.设x,y∈R,A={(x,y)y=x},B={(x,y)yx=1},则A、B间的关系为________.
解析:在A中,(0,0)∈A,而(0,0)∉B,故B A.
答案:B A
8.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则a的值为________.
解析:A⊇B,则a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.
答案:-1或2
9.已知A={xx<-1或x>5},B={xa≤x<a+4},若A B,则实数a的取值范围是________.
解析:作出数轴可得,要使A B,则必须a+4≤-1或a>5,解之得{aa>5或a≤-5}.
答案:{aa>5或a≤-5}
10.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.
解:①若a+b=aca+2b=ac2,消去b得a+ac2-2ac=0,
即a(c2-2c+1)=0.
当a=0时,集合B中的三个元素相同,不满足集合中元素的互异性,
故a≠0,c2-2c+1=0,即c=1;
当c=1时,集合B中的三个元素也相同,
∴c=1舍去,即此时无解.
②若a+b=ac2a+2b=ac,消去b得2ac2-ac-a=0,
即a(2c2-c-1)=0.
∵a≠0,∴2c2-c-1=0,即(c-1)(2c+1)=0.
又∵c≠1,∴c=-12.
11.已知集合A={x1≤x≤2},B={x1≤x≤a,a≥1}.
(1)若A B,求a的取值范围;
(2)若B⊆A,求a的取值范围.
解:(1)若A B,由图可知,a>2.
(2)若B⊆A,由图可知,1≤a≤2.
12.若集合A={xx2+x-6=0},B={xmx+1=0},且B A,求实数m的值.
解:A={xx2+x-6=0}={-3,2}.
∵B A,∴mx+1=0的解为-3或2或无解.
当mx+1=0的解为-3时,
由m•(-3)+1=0,得m=13;
当mx+1=0的解为2时,
由m•2+1=0,得m=-12;
当mx+1=0无解时,m=0.
综上所述,m=13或m=-12或m=0.
本文来自:逍遥右脑记忆 http://www.jiyifa.com/gaozhong/59811.html
相关阅读:数学分支
闂備胶绮〃鍛存偋婵犲倴缂氶柛顐ゅ枔閻濆爼鏌eΔ鈧悧濠囷綖閺嶎厽鐓ユ繛鎴炵懅椤e弶绻濋埀顒佸閺夋垶顥濋梺鎼炲劀閸愨晜娈介梺璇叉捣閹虫挸锕㈤柆宥呮瀬閺夊牄鍔庨々鏌ユ煙閻戞ɑ纾荤紒顔芥尵缁辨捇宕橀埡浣轰患闂佽桨闄嶉崐婵嬬嵁鐎n喗鍋い鏍ㄧ椤斿洭姊洪崨濠勬噭闁搞劏鍋愬☉鐢稿焵椤掑嫭鐓熸慨妯煎帶濞呮瑧绱掓潏銊х畼闁归濞€婵$兘鏁傞悾灞稿亾椤曗偓閹嘲鈻庤箛鎾亾婵犳艾纾婚柨婵嗘椤╃兘鏌涘☉鍗炲闁轰讲鏅犻幃璺衡槈閺嵮冾瀱缂傚倸绉靛Λ鍐箠閹捐宸濇い鏃囧Г鐎氳櫕绻涚€涙ḿ鐭嬪ù婊€绮欓崺鈧い鎺嗗亾闁稿﹦鎳撻敃銏ゅ箥椤旀儳宕ュ┑鐐叉濞寸兘鎯屽畝鍕厵缂備焦锚婵啰绱掔捄铏逛粵缂佸矂浜堕崺鍕礃瑜忕粈鈧梺璇插缁嬫帡鏁嬮梺绋款儏缁夊墎鍒掑顑炴椽顢旈崪鍐惞闂備礁鎼悧鍡欑矓鐎涙ɑ鍙忛柣鏂垮悑閺咁剟鎮橀悙璺轰汗闁荤喐绻堥弻鐔煎几椤愩垹濮曞┑鐘亾濞撴埃鍋撴鐐茬Ч閸┾偓妞ゆ帒瀚€氬顭跨捄渚剱缂傚秮鍋撻梻浣瑰缁嬫垶绺介弮鍌滅當濠㈣埖鍔曠粻銉╂煙缁嬪潡顎楁い搴㈡崌閺岋綁鍩¢崗锕€缍婂畷锝堫槻闁崇粯妫冨鎾倷閸忓摜鐭楅梺鑽ゅУ閸斞呭緤婵傜ǹ绠查柕蹇嬪€曡繚闂佺ǹ鏈崙鐟懊洪妶澶嬬厱婵炲棙鍔曢悘鈺傤殽閻愬弶鍠樼€殿喚鏁婚、妤呭磼濠婂啳顔夐梻浣告惈閻楀棝藝閹殿喚鐭撻柛锔诲幐閸嬫挸顫濋浣规嫳婵犲痉銈勫惈闁诡噮鍣i、妯衡攽鐎n偅鐣堕梻浣告惈椤р偓闁瑰嚖鎷�/闂佸搫顦弲婊呮崲閸愵亝鍏滈柤绋跨仛娴溿倖绻濋棃娑掔湅婵炲吋鍔欓弻锝夊Ω閵夈儺浠奸梺鍝ュ仜椤曨參鍩€椤掆偓濠€鍗炩枍閵忋垺顫曟繝闈涚墛鐎氭氨鈧懓瀚妯煎緤濞差亝鈷戞い鎰剁磿缁愭棃鏌涚€n偆澧紒鍌涘浮楠炲棝寮堕幐搴晭 bjb@jiyifa.com 濠电偞鍨堕幐楣冨磻閹惧瓨鍙忛柕鍫濐槹閺咁剟鎮橀悙璺轰汗妞ゅ繗浜槐鎾存媴閸濄儳顔夐梺缁樻惈缁辨洟鍩€椤掆偓濠€閬嶅磿閹寸姵顫曟繝闈涱儏鐎氬銇勯幒鎴濃偓鏄忋亹閺屻儲鍊堕煫鍥ㄦ尰椤ョ娀鏌e┑鍥╂创鐎规洘姘ㄩ幏鐘诲箵閹烘柧鎮i梻鍌氬€哥€氥劑宕愰幋锕€鐒垫い鎺戯攻鐎氾拷