2014--2015学年度第二学期
八年级第一次质量检测数学试卷
一、选择题(本大题共8题,每小题3分,共24分.)
1、 下列四个图形中,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
2、在 , , , 中,是分式的有( )
A. 1个 B. 2个 C. 3个 D . 4个
3、已知平行四边形ABCD中,∠A+∠C=200°,则∠B的度数是 ( )
A.100° B.160° C.60° D.80°
4、若分式 的值为0,则 的取值为( )
A、 B、 C、 D、无法确定
5、菱形具有而矩形不一定具有的性质是( )
A.对角线互相垂直 B.对角线相等 C.对角线互相平分 D.对角互补
6、顺次连接平行四边形的各边中点,所得的图形一定是 ( )
A、矩形 B、菱形 C、正方形 D、平行四边形
7、如果把分式 中的x和y都扩大2倍,那么分式的值 ( )
A.扩大2倍 B.扩大4倍 C.不变 D.缩小
8、如图,把矩形 沿 对折,若 ,则 等于( )
A. B. C. D.
二、填空题(本大题共8题,每小题3分,共24分.)
9、请你写出一个是中心对称图形的几何图形的名称: .
10、若分式 有意义,则x的取值范围是
11、菱形的两条对角线分别为3cm和4cm,则菱形的面积为_____cm;
12、化简: =
13、若 =2,则 =_________.
14、如图,在平行四边形ABCD中,对角线交于点0,点E、F在直线AC上(不同于A、C),当E、F的位置满足 的条件时,四边形DEBF是平行四边形.
15、在菱形ABCD中,E为AB的中点,OE=3,则菱形ABCD的周长为 .
16、如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为__________
三、解答题(本大 题共8题,共72分.)
17、(本题满分10分)计算
(1) (2)
18、(本题满分6分)作图题:作出四边形ABCD关于O点成中心对称的四边形A?B?C?D?
19、(本题满分8分)
先化简,再求值: ,再选一个你认为合适的数作为a的值代入求值.
20、(本题满分8分)如图,□ABCD中,BE平分∠ABC且交边AD于点E,如果AB=6cm,BC=10cm,
试求:⑴□ABCD的周长;⑵线段DE的长.
21、(本题满分6分)下面是小丽课后作业中的一道题:
计算: .
解:原式= .
你同意她的做法吗?如果同意,请说明理由;如果不同意,请把你认为正确的做法写下来.
22、(本题满分8分)如图,在△ABC中,点D、E、F分别在BC、AB、AC边上,且DE∥AC,DF∥AB.
(1)如果∠BAC=90°,那么四边形AEDF是 形;
(2)如果AD是△ABC的角平分线,那么四边形AEDF是 形;
(3)如果∠BAC=90°,AD是△ABC的角平分线,则四边形AEDF是 形,
证明你的结论(仅需证明第⑶题结论).
23、(本题满分6分)请你在下列三个不为零的式子 中,任选两个你喜欢的式子构造一个分式,并化简该分式。
24、 (本题满分8分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).
(1)四边形EFGH的形状是 ,(证明你的结论. )
(2)当四边形ABCD的对角线满足 条件时,四边形EFGH是矩形;
证明:
25、(本题满分12分)我校某班学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.
(1)求证:AM=AN;
(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.
本文来自:逍遥右脑记忆 https://www.jiyifa.com/chuer/304072.html
相关阅读:2018年1月13日八年级数学上册期末总复习5