使用说明:学生利用自习先预习本第13、14页10分钟,然后35分钟独立做完学案。正由小组讨论交流10分钟,25分钟展示点评,10分钟整理落实,对于有疑问的题目教师点拨、拓展。
【学习目标】
1、理解直角三角形全等的判定方法“HL”,并能灵活选择方法判定三角形全等;
2.通过独立思考、小组合作、展示质疑,体会探索数学结论的过程,发展合情推理能力;
3. 极度热情、高度责任、自动自发、享受成功。
教学重点:运用直角三角形全等的条解决一些实际问题。
教学难点:熟练运用直角三角形全等的条解决一些实际问题。
【学习过程】
一、自主学习
1、复习思考
(1)、判定两个三角形全等的方法: 、 、 、
(2)、如图,Rt△ABC中,直角边是 、 ,斜边是
(3)、如图,AB⊥BE于B,DE⊥BE于E,
①若∠A=∠D,AB=DE,
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
②若∠A=∠D,BC=EF,
则△ABC与△DEF (填“全等”或“不全等” )
根据 (用简写法)
③若AB=DE,BC=EF,
则△ABC与△DEF (填“全等”或“不全等” )根据 (用简写法)
④若AB=DE,BC=EF,AC=DF
则△ABC与△DEF (填“全等”或“不全等” )根据 (用简写法)
2、如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?
(1)动手试一试。
已知:Rt△ABC
求作:Rt△ , 使 =90°, =AB, =BC
作法:
(2)把△ 剪下放到△ABC上,观察△ 与△ABC是否能够完全重合?
(3)归纳;由上面的画图和实验可以得到判定两个直角三角形全等的一个方法
斜边与一直角边对应相等的两个直角三角形 (可以简写成“ ”或“ ”)
(4)用数学语言表述上面的判定方法
在Rt△ABC和Rt 中,
∵ ∴Rt△ABC≌Rt△
(5)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法 “ ”、
“ ”、 “ ”、 “ ”、 还有直角三角形特殊的判定方法 “ ”
二、合作探究
1、如图,AC=AD,∠C,∠D是直角,将上述条标注在图中,你能说明BC与BD相等吗?
2、如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的大小有什么关系?
三、学以致用
1、如图,△ABC中,AB=AC,AD是高,
则△ADB与△ADC (填“全等”或“不全等” )
根据 (用简写法)
2、判断两个直角三角形全等的方法不正确的有( )
A、两条直角边对应相等 B、斜边和一锐角对应相等
C、斜边和一条直角边对应相等 D、两个锐角对应相等
3、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,
AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由
答:AB平行于CD
理由:∵ AF⊥BC,DE⊥BC (已知)
∴ ∠AFB=∠DEC= °(垂直的定义)
∵BE=CF,∴BF=CE
在Rt△ 和Rt△ 中
∵ ∴ ≌
( )
∴ = ( )
∴ (内错角相等,两直线平行)
四、能力提升:(学有余力的同学完成)
如图1,E、F分别为线段AC上的两个动点,且DE⊥AC于E点,BF⊥AC于F点,若AB=CD,AF=CE,BD交AC于点。(1)求证:B=D,E=F;(2)当E、F两点移动至图2所示的位置时,其余条不变,上述结论是否成立?若成立,给予证明。
五、当堂检测
如图,CE⊥AB,DF⊥AB,垂足分别为E、F,
(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据
(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据
(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据
(4)若AC=BD,AE=BF,CE=DF。则△ACE≌△BDF,根据
(5) 若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,根据
六、堂小结
这节你有什么收获呢?与你的同伴进行交流
作业:第16页习题11.2 7-8 第17页第13题
本文来自:逍遥右脑记忆 https://www.jiyifa.com/chuer/46852.html
相关阅读:一次函数导学案