节第二题
型复习教法讲练结合
教学目标(知识、能力、教育)1. 经历将一些实际问题抽象为不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型,进一步发展符号感.
2.能根据具体问题中的数量关系,列出一元一次不等式(组)解决简单的实际问题,并能根据具体问题的实际意义,检验结果是否合理.
3.初步体会不等式、方程、函数之间的内在联系与区别
教学重点列出一元一次不等式(组)解决简单的实际问题。
教学难点体会不等式、方程、函数之间的内在联系与区别。
教学媒体学案
教学过程
一:【前预习】
(一):【知识梳理】
1.列不等式解的特征:列不等式解,一般所求问题有“至少”“最多”“不低于”“不大于”“不小于”等词,要正确理 解这些词的含义.
2.列不等式解应用题的一般步骤:列不等式解应用题和列方程解应用题的一般步骤基本相似,其步骤包括:① ;② ;③ ;④ ;⑤ 。(其中检验是正确求解的必要环节)
(二):【前练习】
1.在一次“人与自然”知识竞赛中,竞赛题共25道,每道题都给会4个答案,其中只有一个答案正确,选对得4分,不选或选错倒扣 2分,得分不低于 60分得奖,那么得奖至少应选对( )道题.
A.18 B.19 C.20 D.21
2.某班在布置新年联欢晚会会场时,需要将直角三角形
彩纸裁成长度不等的短形彩条如右图,在Rt△ABC中,
∠C=90°,AC=30cm,AB=50cm,依次裁下宽为1cm的矩形彩条a1,a2,a3……若使裁得的矩形彩条的长都不小于5cm,则将每张直角三角形彩纸裁成的矩形纸条的总数是( )
A.24; B.25; C.26; D.27
3.一个两位数,其个位数字比十位数字大2,已知这个两位数大于20而小于40,求这个两位数.
4.若干学生分住宿舍,每间4人余20人;每间住8人有一间不空也不满,则宿舍有多少间?学生多少人?
5.某通讯公司规定在营业网内通话收费为:通话前3分钟0.5元,通话超过3分钟每分钟加收0.1元(不足1分钟按1分钟计算)某人一次通话费为1.1元,问此人此次通话时间大约为多少?
二:【经典 考题剖析】
1. 光明中学9年级甲、乙两班在为“希望工程”捐款活动中,两班捐款的总数相同,均多于300元且少于400元.已知甲班有一人捐6元,其余每人都捐9元;乙班有一人捐13元,其余每人都捐8 元.求甲、乙两班学生总人数共是多少人?
解:设甲班人数为x人,乙班人数为y人,由题意,
可得
因为x为整数,所以x=34,35,36,37,38,39,40,41,42,43,44.又因为y也是整数,所以x 是8的倍数.所以x=40.则y=44.所以总人数是 84.
答:甲、乙两班学生总人数共是84人。点拨:此题中取整数是难点和关键,应根据实际,人数都为整数确定甲、乙两班的人数.
2.若方程 一个根大于-1,另一个根小于-1,求 的取值范围
解析:此题有常规解法,即利用根与系数的关系和根的判别式求解。但若能注意知识间内在联系,把一元二次方程与二次函数结合起,利用二次函数的图象解此题可谓绝妙。
3. 由于电力紧张,某地决定对工厂实行鼓励错峰用电.规定:在每天的7:00至
24:00为用电高峰期.电价为a元/度;每天0:0 0至7:0 0为用电平稳期,电价为 b元/度.下表为某厂4、5月份的用电量和电费的情况统计表:
⑴ 若4月份在平稳期的用电量占当月用电量的 ,
5月份在平稳期的用电量占当月用电量的 ,求a、b在的值;
⑵ 若 6月份该厂预计用电20万度,为将电费控制在 10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在平稳期的用电量占当月用电量的比例应
在什么范围?
4.现计划把甲种货物1240吨和乙种货物880吨 用一列货车运往某地,已知这列货车挂
有A、B两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,使用B
型车厢每节费用为8000元。
(1)设运送这批货物的总费用为 万元,这列货车挂A型车厢 节,试写出 与 之间的函数关系式;
(2)如果每节A型车厢最多可装甲种货物3 5吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种 车厢的节数,那么共有哪几种安排车厢的方案?
(3)在上述方案中,哪种方案运费最省,最少运费为多少元?
略解:(1)设用A型车厢 节,则用B型车厢 节,总运费为 万元,则:
(2)依题意得:
解得:24≤ ≤26;∴ =24或25或26;∴ 共有三种方案安排车厢。
(3)由 知, 越大, 越小,故当 =26时,运费最省,这时,
=26.8(万元)
5. 在车站开始检票时,有 ( >0)名旅客在候车室排队等候 检票进站。检票开始后,仍有旅客继续前排队检票进站。设旅客按固定的速度增加,检票口检票的速度也是固定的。若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后到站的旅客能随到随检, 至少要同时开放几个检票口?
分析:该题联系生活实际,设计巧妙,要求学生有较强的理解能力,综合应用不等式、方程、函数等方面的知识建立数学模型;对学生如何运用所学数学知识解决实际问题(即将实际问题转化为数学问题)的能力提出了较高的要求。本题解题方法多,给学生发挥才能的空间大,是一道考查学生分析问题和解决问题能力的好题。
解法1:设检票开始后每分钟新增加的旅客为 人,检票的速度为每个检票口每分钟 人,5分钟内检票完毕要同时开放 个检票口,依题意得: ,由(1)、(2)消去 得 (4),代入(1)得 (5),将(4)和(5)代入(3)得 ,而 >0,所以 ,又 为整数,因此 =4,故至少需同时开放4个检票口。
解法2:利用检票时间相等建立等量关系,即不管开放几个检票口,每位旅客的检票时间相等,得 (字母含义与解法1相同),以下解法略。
解法3:设开始检票后每分钟新增加旅客为 人,检票的速度为每分钟 人,开放检票口的个数为 个,检票时间为 分钟,依题意, 与 之间的函数关系为 ,而 =30, =1; =10, =2,因此可求出函数关系为 ,即 ,当 ≤5时, ≥3.5,故至少需同时开放4个检票口.本题还有其它解法略。
三:【后训练】
1. 已知导火线的燃烧速度是0.7厘米/秒,爆破员点燃后跑 开的速度为每秒5米,为了点火后跑到130米外的安全地带,问导火线至少应有多长?(精确到I厘米)
2. 甲、乙两车间同生产一种零,甲车间有1人每天生产6,其余每人每天生产11,乙车间有1人每天生产7,其余的生产10,已知各车间生产的零数相等,且不少于100又不超过200,求甲、乙车间各多少人?
3. 商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但每日耗电量却为0.55度.现将A型冰箱打折出售时一折后的售价为原价的 ,问商场至少打几折,消费者购买才合算(按使用期为10年,每年365天,每度电0.4 0元计算).
4. 现有住宿生若干人,分住若干间宿舍,若每间住4 人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,求住宿生人数和宿舍间数.
6. 某钢铁企业为了适应市场需要,决定将一部分一线员工调整到服务岗位.该企业现有一线员11000人.平均每人全年可创造钢铁产品产值 30万元.根据规划,调整后,剩下的一线员工平均每人全年创造钢铁产品产值可增加30%,调整到服务岗位人员平均每人全年可创造产值24万 元.要求调整后企业全年的总产值至少增加 20%,并且钢铁产品的产值不能超过33150万元.怎样安排调整到服务岗位的人数?
8. 某生产“科学计算器”的公司有100名职工,该公司生产的计算器由百货公司代理销售,经公司多方考察,发现公司的生产能力受到限制.决定引人一条新的计算器生产线生产计算器,并从这100名职工中选派一部分人到新生产线工作.分工后,继续在原生产线从事计算器生产的职工人均年产值可增加20%,而分派到新生 产线的职工人均年产值为分工前人均年产值的4倍,如果要保证公司分工后,原生产线生产计算器的年总产值不少于分工前公司生产计算器的年总产值。而新生产线生产计算器的年总产值不少于分工前公司生产计算器的年总产值的一半,试确定分派到新生产
线的人数.
9. 某饮料厂为了开发新产品,用A、B两种果汁原料各19千克、17.5千克,试制甲、乙两种新型饮料共50千克,下表示试验的相关数据:
(1)假设甲种饮料配制x千克,请你写出满足提议的不等式组,并求出其解;
(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,请写出y与x的函数表达式,并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?
10. 某校计划明年暑假组织初三教师到新、马、泰(新加坡、马西亚、泰国)旅游,校长从网上了解到甲、乙两旅行社的服务质量相同,且组织到新、马、泰的标价都是每人3580元,暑期对于教师可给予优惠:甲旅行社可给予每位教师(包括一名带队校长)七五折优惠;乙旅行社可免去一名带队校长的费用,其余教师八折优惠.
(1)若共有 人(含一名带队校长)参加旅游活动,请你帮助校长作出选择:选两家旅行社中的哪一家,能使学校支付的旅游总费用最少.
(2)若初三教师共有18人(不包括校长),问应选哪家旅行社?这时应支付旅游总费用多少元?
四:【后小结】
布置作业地纲
本文来自:逍遥右脑记忆 https://www.jiyifa.com/chusan/34273.html
相关阅读:中考第一轮复习平行四边形学案、巩固案