北师大版九年级数学上全册精品教案
第一证明(二) (时安排)
1.你能证明它们吗? 3时
2.直角三角形 2时
3.线段的垂直平分线 2时
4.角平分线 1时
1.你能证明它们吗?(一)
目标:
知识与技能目标:
1.了解作为证明基础的几条公理的内容。
2.掌握证明的基本步骤和书写格式.
过程与方法
1.经历“探索——发现——猜想——证明”的过程。
2.能够用综合法证明等区三角形的有关性质定理。
情感态度与价值观
1.启发、引导学生体会探索结论和证明结论,即合情推理与演绎推理的相互依赖和相互补充的辩证关系.
2.培养学生合作交流、独立思考的良好学习习惯.
重点、难点、关键
1.重点:探索证明的思路与方法。能运用综合法证明问题.
2.难点:探究问题的证明思路及方法.
3.关键:结合实际事例,采用综合分析的方法寻找证明的思路.
过程:
一、议一议:
1.还记得我们探索过的等腰三角形的性质吗?
2.你能利用已有的公理和定理证明这些结论吗?
给出公理和定理:
1.等腰三角形两腰相等,两个底角相等。
2.等边三角形三边相等,三个角都相等,并且每个角都等于 延伸.
二、回忆上学期学过的公理
本套教材选用如下命题作为公理 :
1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
2.两条平行线被第三条直线所截,同位角相等;
3.两边夹角对应相等的两个三角形全等; (SAS)
4.两角及其夹边对应相等的两个三角形全等; (ASA)
5.三边对应相等的两个三角形全等; (SSS)
6.全等三角形的对应边相等,对应角相等.
三、推论 两角及其中一角的对边对应相等的两个三角形全等。(AAS)
证明过程:
已知:∠A=∠D,∠B=∠E,BC=EF
求证:△ABC≌△DEF
证明:∵∠A+∠B+∠C=180°,
∠D+∠E+∠F=180°
(三角形内角和等于180°)
∴∠C=180°-(∠A+∠B)
∠F=180°-(∠D+∠E)
又∵∠A=∠D,∠B=∠E(已知)
∴∠C=∠F
又∵BC=EF(已知)
∴△ABC≌△DEF(ASA)
推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
随堂练习:
做教科书第4页第1,2题。
堂小结:
通过这节的学习你学到了什么知识?
作业:
1、基础作业:P5页习题1.1 1、2。
1.你能证明它们吗(二)
教学目标:
知识与技能目标:
掌握证明的基本思路和书写格式。
过程与方法目标:
经历观察——探索——发现的过程,能运用综合法证明等腰三角形判定定理。
情感态度与价值观目标:
1.感悟证明的实际意义以及必要性,形成探究意识。
2.结合实例体会反证法的含义,培养逆向思维。
重点、难点、关键:
1.重点:掌握证明的常见方法以及书写推理过程。
2.难点:寻找证明的思路,选择证明的方法。
3.关键掌握综合分析法,结合公理、定理,依据条、结论进行推断、猜测,寻求证题的切入点.
教学过程:
一、提出问题,分组活动
(1)请同学们在练习本上画一个等腰三角形,一个等边三角形。
(2)在你所画的等腰(等边)三角形中作出一些你认为可以通过所学知识证明的相等线段。
二、下面是几种结论:
(1)等腰三角形两底角平分线相等。
(2)等腰三角形两腰上的中线、高线相等。
(3)等腰三角形底边上的高上任一点到两腰的距离相等。
(4)等腰三角形两底边上的中点到两腰的距离相等。
(5)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等。
(6)等腰三角形顶点到两腰上的高、中线、角平分线的距离相等。
1.练习一 证明:等腰三角形两腰上的中线相等。
2练习二 证明:等腰三角形底边上的中点到两腰的距离相等.
三、将推理证明过程书写出。
问题提出:有两个角相等的三角形是等腰三角形吗?
随堂练习:
已知:在ΔABC中,AB=AC,D在AB上,DE∥AC
求证:DB=DE
堂小结:
(1)归纳判定等腰三角形判定有几种方法,
(2)证明两条线段相等的方法有哪几种。
(3)通过这节的学习你学到了什么知识?了解了什么证明方法?
作业:
1、基础作业:P9页习题1.2 1、2、3。
2、拓展作业:《目标检测》
3、预习作业:P10-12页 做一做
1.你能证明它们吗(三)
教学目标:
知识与技能目标:
1.经历探索等腰三角形成为等边三角形的条及其推理证明过程.
2.经历实际操作,探索含有30°角的直角三角形性质及其推理证明过程.
过程与方法目标:
1.经历运用几何符号和图形描述命题的条和结论的过程,建立初步的符号感,发展抽象思维.
2.经历观察、实验、猜想、证明的数学活动过程,发展合情推理能力和初步的演绎推理的能力,能有条理地、清晰地阐述自己的观点.
3.形成证明一些结论的基本策略,发展学生的实践能力和创新精神.
情感态度与价值观目标:
1.积极参与数学学习活动,对数学有好奇心和求知欲.
2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.
重点、难点、关键:
1.重点:掌握两个几何定理,以及推理证明的逻辑思想。
2.难点:渗透分类讨论的数学思想,以及辅助残的应用。
3.关键:充分运用综合分析法分析证明的思路.注意辅助线的添加、辅助图形的构造。增强数学的分类意识。
教学过程:
一、提出问题:
(1)怎样判别一个三角形是等使三角形?
(2)一个等腰三角形满足什么条时便成为等边三角形?
(3)你认为有一个角等于 的等腰三角形是等边三角形吗?你能证明你的结论吗?
二、做一做
用两块含 角的三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗?说说你的理由。
三、提出问题:通过上述的拼摆,你联想到什么?在直角三角形中, 角所对的直角边与斜边有怎样的大小关系?能证明你的结论吗?
定理:在直角三角形中,如果一个锐角等于 ,那么它所对的直角边等于斜边的一半。
堂小结:
本节是在学习了全等三角形判定、等腰三角形性质、判定以及推论的基础上进行拓展,通过新旧知识的迁移以及拼摆实验,直观地探索出定理:有一个角等于 的等腰三角形是等边三角形.以及定理:在直角三角形中,如果一个锐角等于 ,那么它所对的直角边等于斜边的一半。这两个定理在简化几何步骤,以及计算或证明中起着积极的作用.
作业:
本习题1.3 1、2、3
本文来自:逍遥右脑记忆 https://www.jiyifa.com/chusan/42046.html
相关阅读:中考数学规律探索性问题复习