建立二次函数模型2 教案

编辑: 逍遥路 关键词: 九年级 来源: 高中学习网
1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。
2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯
重点难点:
重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是的重点。难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
教学过程:
一、提出问题
1,同学们可以回想一下,一次函数的性质是如何研究的?
(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)
2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?
(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)
3.一次函数的图象是什么?二次函数的图象是什么?
二、范例
例1、画二次函数y=ax2的图象。
解 :(1)列表:在x的取值范围内列出函数对应值表:
x…-3-2-10123…
y…9410 149…
(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点
(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?
让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。
抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做 抛物线的顶点.
三、做一做
1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?
2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?
3.将所画的四个函数的图象作比较,你又能发现什么?
对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。两个函数图象的共同点以及它们的区别,可分组讨论。交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。
对于2,教师要继续巡视,指导学生画函数图象,两个 函数的图象的特点;教师可引导学生类比1得出。
对于3,教师可引导学生从1的共同点和2的发现中得到结论:四个函数的图象都是抛物线,都关于y轴对称,它的顶点坐标都是(0,0).
四、归纳、 概括
函数y=x2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数y=x2、y=-x2、y=2x2、y=-2x2的图象的共同特点,可猜想:
函数y=a x2的图象是一条________,它关于______对称,它的顶点坐标是______。
如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么?
让学生观察y=x2、y=2x2的图象,填空;
当a>0时,抛物线y=ax2 开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
图象的这些特点反映了函数的什么性质?
先让学生观察下图,回答以下问题;
(1)XA 、XB大小关系如何?是否都小于0?
(2)yA、yB大小关系如何?
(3)XC、XD大小关系如何?是否都大于0?
(4)yC、yD大小关系如何?
(XAyB;XC0,XD>0,yC 其次,让学生填空。
当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______;当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______
以上结论就是当a>0时,函数y=ax2的性质。
思考以下问题:
观察函数y=-x2、y=-2x2的图象,试作出类似的概括,当a 让学生讨论、交流,达成共识,当aO时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得 最大值,最大值是y=0。
五、课堂练习:P6练习1、2、3、4。

本文来自:逍遥右脑记忆 https://www.jiyifa.com/chusan/67910.html

相关阅读:中考复习锐角三角形函数学案