初一下册数学第五章生活中的轴对称学案

编辑: 逍遥路 关键词: 七年级 来源: 高中学习网
M
5.1 轴对称现象(P115-117页)
评价:
【学习目标】:1、理解轴对称图形和成轴对称的图形的意义,能够识别这些图形并能指出它们的对称轴;
2、体会轴对称在现实生活中的广泛应用和丰富的文化价值。
【主要问题】:什么是轴对称图形?什么是成轴对称图形?
一、知识回顾:
1、全等图形是指: .
2、如图(1),AC平分∠DAE,且AD = AE,B为AC上一点,求证:△CBD≌△CBE.

3、如图(2), AO平分∠EAD和∠EOD.求证:① △AOE≌△AOD ;②EB=DC


二、新知识产生过程
问题1:什么是轴对称图形? 请课本P115页
1、观察下列几组图片和图形,它们有什么共同特点?

由此发现,如果 平面图形沿一条 折叠后,直线两旁的部分能够 ,那么这个图形叫做 .这条直线叫做 .
2、课本P115 议一议
观察下列图形,哪些图形是轴对称图形?如果是轴对称图形,请画出它的对称轴.

理解轴对称图形应注意三点:(1)轴对称图形是一个图形;(2)对折;(3)重合。

3、课本P115 做一做
将一张纸对折后,用笔尖扎出如图所示的图形,
然后将纸打开铺平,你会得到什么图形?你还
能用这样的方法得到其它的轴对称图形吗?

问题2:什么是成轴对称图形?
4、观察下列图案,你发现了什么?下面的每一组图案是由 个图形组成的.

由此发现,如果 平面图形沿一条 对折后能够 ,那么称 ,这条直线叫做这两个图形的 .
5、轴对称图形与两个图形成轴对称的关系
共同点不同点
轴对称图形
两个图形成轴对称
注意:对于平面图形,当把直线(对称轴)两旁的部分看成一个图形时,它便是 图形。
当把直线(对称轴)两旁的部分看成两个图形时,它便是两个图形成 ,
两者并非能够严格的区分.
三、巩固练习:
6、下列平面图形中,不是轴对称图形的是: ( ).

7、(1)请完成下表:
图形


……
名称
对称轴条数
(2)请你就正n 边形的对称轴条数做一个猜想

5.2 探索轴对称的性质(P118-119页)
评价:
【学习目标】:1、经历探索轴对称性质的过程,积累数学活动经验,发展空间观念;
2、理解轴对称的性质;
【主要问题】:轴对称图形和两个图形成轴对称有哪些性质?
一、基础知识回顾
1、:
(1)轴对称图形只有一条对称轴( ) (2)轴对称图形的对称轴是一条线段( )
(3)两个图形成轴对称,这两个图形是全等图形( )
(4)轴对称图形指两个图形( )
2.下面图形是轴对称图形的有( )
A.角 B.线段 C.太极图 E.等腰三角形
D.香港特别行政区区旗上的紫荆花 F.五角星
3、

二、新知识产生过程
问题1:两个图形成轴对称有哪些性质? 请课本P118页
4、如图(1),将一张矩形纸对折,然后用笔尖扎出“14”这个数学,将纸打开后铺平.

(1)在上图中,两个“14”有什么关系? ;
(2)在上面扎字的过程中,点E与点 重合,点F与点 重合 (互相重合的点叫对应点)
设折痕所在直线为 ,连接点E和点 的线段与直线 有什么关系?
连接点F和点 的线段与直线 有什么关系?
(线段 和线段 叫做对应点所连的线段)
(3)线段AB与线段 有什么关系? ;线段CD与线段 呢? .理由是 .
(4) 与 有什么关系? ; 与 呢? ;
理由是 .
问题2:轴对称图形有哪些性质? 请阅读课本P118页
5、如图(2)的轴对称图形,回答下列问题:
(1)请在图中画出它的对称轴;
(2)连接点 和点 ,线段 与对称轴有什么关系?
.
连接点 和 ,线段 与对称轴有什么关系?
.
理由是: .
(3)线段AD与线段 有什么关系? ;线段BC与线段 呢? .
理由是: .
(4) 与 有什么关系? ; 与 呢? ;
理由是: .
相关名词:在图(2)中,沿对称轴对折后,点 与点 重合,称点 关于对称轴的 是点 .类似地,线段AD关于对称轴的 是线段 ; 关于对称轴的 是 .
6、归纳总结:由第1题、第2题可以得出:在轴对称图形或两个成轴对称图形中,
① ;② ;③ .
三、巩固练习:
7、课本P119 做一做:
图(3)是一个图案的一半,其中的虚线是
这个图案的对称轴,画出这个图案的另一半
8、如图(4)是轴对称图形,则相等的线段
有 ,相等的角是
9.轴对称图形沿对称轴对折后,对称轴两旁的部分( )
A.完全重合B.不完全重合 C.两者都有
10. 如图(5),△ABC与△A′B′C′关于直线 对称,
则∠B的度数为 。

四、提高题:
11、如图(6),△ABC与△DEF关于直线l成轴对称
①请写出其中相等的线段;
②如果△ABC的面积为6cm,且DE=3cm,求△ABC中AB边上的高h。

5.3 简单的轴对称图形(1)(P121-122页)
评价:
【学习目标】:1、经历探索等腰三角形的轴对称性的过程,进一步理解轴对称的性质,发展空间观念;
2、探索并了解等腰三角形的轴对称性及其相关性质;
【主要问题】:等腰三角形有哪些性质?等边三角形有哪些性质?
一、基础知识回顾
1、下列图形不一定是轴对称图形的是( )A、圆 B、长方形 C、线段 D、三角形
2、以下结论正确的是( ).
A.两个全等的图形一定成轴对称 B.两个全等的图形一定是轴对称图形
C.两个成轴对称的图形一定全等 D.两个成轴对称的图形一定不全等
3、轴对称图形对应点连线被 ,对应角对应线段都 .
4、设A、B两点关于直线MN成轴对称,则 垂直平分 .
5、三角形的周长等于 ,三角形的内角和是 .
6、怎样的三角形是轴对称图形?答: 。
7、如图(1), △ABC中,AB=AC,请在图中标出此三角形各边和各角的名称。
二、新知识产生过程
问题1:等腰三角形有哪些性质?请阅读课本P121
8.等腰三角形是轴对称图形吗?如果是,请在图(2)中画出它的对称轴.
你是如何找到等腰三角形的对称轴的? .
等腰三角形的对称轴是什么? .
A.顶角的平分线所在的直线 B.底角的平分线所在的直线
C.底边上的高所在的直线 D.底边上的中线所在的直线
9.当你把等腰三角形沿它的对称轴对折后,你能发现等腰三角形有哪些特征?
把△ABC沿折痕AD对折,找出其中重合的线段和角,填入下表(如图(3))

(关键操作:对折、重合)
10.归纳等腰三角形的性质:
性质1 .
性质2

性质3 .

11、根据等腰三角形性质定理,如图(4),在△ABC中, AB=AC时,
(1) ∵AD⊥BC,∴∠_____ = ∠_____, = .
(2) ∵AD是中线,∴____⊥____ ,∠_____ =∠_____.
(3) ∵AD是角平分线,∴____ ⊥____ ,_____ =_____.
12、等腰三角形一个底角为70°,它的顶角为 .
问题2:等边三角形的哪些性质?
13、等腰三角形中有一种特殊的等腰三角形是 三角形,
即 叫等边三角形。
14、等边三角形是轴对称图形吗?
如果是,请你在图(5)画出等边三角形的对称轴
你能画出几条对称轴? .
15、当你把等边三角形沿它的对称轴对折后,
你能发现等边三角形有哪些特征?

16、归纳等边三角形性质:
性质1:等边三角形是 图形,它有 条对称轴.
性质2:等边三角形 相等.
17、课本P121 “议一议”:你有哪些办法可以等到一个等腰三角形?(课堂上小组交流)

三、巩固练习:
18、等腰三角形一个角为70°,它的另外两个角为
19、等腰三角形的两边长分别为6,8,则周长为 ;等腰三角形的周长为14,其中一边长为6,则另两边分别为
20、如图(6),在△ABC中,AB=AC,∠B=70度,点D为BC的中点,
求∠BAD的度数.

20、如图(7),△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.

四、提高题:
21、如图(8)所示,在△ABC中,AB=AB,FD⊥BC,DE⊥AB,垂足
分别为D,E,∠AFD=158°,求∠EDF的度数.
5.3 简单的轴对称图形(2)(P123-124页)
评价:
【学习目标】:1.经历探索线段轴对称性过程,进一步理解轴对称的性质,发展空间观念;
2.掌握线段垂直平分线的性质;
3.掌握用尺规作线段的垂直平分线;
【主要问题】:线段的对称轴是什么?线段的垂直平分线的性质是什么?
如何用尺规作出线段的对称轴?
一、基础知识回顾
1、等腰三角形 、 和 互相重合.
2、如图(1)所示, ,BD=5cm,则BC= .
3、已知等腰三角形一个角75度,那么其余两个角的度数为 .
4、一个等腰三角形的周长为35cm,腰长是底边的2倍,则腰长为 ,底边长为 .
5、线段的中点是指: .
6、三角形的重心是指: .
二、新知识产生过程
问题1:线段的对称轴是什么?请阅读课本P123
7.线段是轴对称图形吗?如果是,请在图(2)中画出它的对称轴.
你是如何找到线段的对称轴的? .
8.线段的对称轴与线段存在着什么关系? .
9.归纳结论:线段是 图形, 是线段的一条对称轴.
10、线段的垂直平分线(简称中垂线)是指: .
问题2:线段的垂直平分线的性质?
11、课本P123 “议一议” (如图(3),沿OC对折后,AC与BC重合吗?)
(1)如图(3),点C是线段AB的垂直平分线上的一点,AC和BC相等吗?
理由是:

(2)改变点C的位置,以上结论还成立吗?
答:
12.归纳线段垂直平分线的性质:
线段垂直平分线上的点 .
几何语言:如图(4)
OA=OB,
点C是OM上的一点
∴ = .
注意:这个结论是经常用来说明两条线段相等的依据之一

问题3:如何用尺规作线段的垂直平分线?
13、课本P124 例 1:利用尺规,作线段AB的垂直平分线(图5)
已知:线段AB.
求作:AB的垂直平分线.
作法:1.分别以 和 为圆心,以 的长为半径作弧,
两弧相交于 和 ;
2.作 .
就是线段AB的垂直平分线.
14、为什么第13题这样就能作出线段的垂直平分呢?其中的道理是什么?

15、课本P124 做一做 利用尺规作 16、利用尺规作如图(7)所示的
如图(6)所示的△ABC的重心. △ABC的三边中线

三、巩固练习:
17.在△ABC中,BC=10,边BC的垂直平分线分别交AB,BC于点E,D,BE=6,则△BCE的周长是 .

18.如图,AB是△ABC的一条边,DE是AB的垂直平分线,垂足为E,并交BC于点D,已知AB=8cm,BD=6cm,那么EA=________, DA=____.
19. 如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么△BCD的周长是_______cm.
20.如图,已知点D在AB的垂直平分线上,如果AC=5cm,BC=4cm,那么△BDC的周长是 cm。
四、提高题:
21、如图所示,点A、点B和点C三点表示三个工厂,
现要建一供水站,使它到这三个工厂的距离相等,请
在图中标出供水站的位置P,请给予说明理由。
5.3 简单的轴对称图形(3)(P125-126页)
评价:
【学习目标】:1、经历探索角的轴对称性的过程,进一步理解轴对称的性质发展空间观念;
2、掌握角平分线的性质;
3、掌握用尺规作角的平分线;
【主要问题】:角的对称轴是什么?角的平分线的性质是什么?
如何用尺规作出线段的对称轴?
一、基础知识回顾
1、如图(1)所示,在 中,AC边的中垂线交BC于点D,垂足为E,则相等的线段有 ,相等的角有 .
2、如图(2),在 中, , ,BC的垂直平分线交AB于点D,交BC于点E,则图中等于 的角有 个,分别是: .
3、如图(3),在 中,AB=AC, ,AB的垂直平分线
交AC于点N,则 .
4、角平分线是指:

.
二、新知识产生过程
问题1:角的对称轴是什么?请阅读课本P125
5.角是轴对称图形吗?如果是,请在图(4)中画出它的对称轴.
你是如何找到角的对称轴的? .
6、归纳结论:角是 图形, 是角的一条对称轴.
问题2:角平分线的性质?
7、课本P125“做一做”
(1)如图(5),将角对折,使角的两边重合折痕就是 的平分线;
(2)在 的角平分线上任意取一点C,分别折出过点C且与
的两边垂直的线(这一步如何折?),垂足分别为点D和点E,将
再次对折,线段CD和 CE能重合吗?
答: (“能”或“不能”)重合.
理由是:

(3)改变点C的位置,线段CD和CE还相等吗?
答:

8.归纳角平分线的性质:
.
几何语言:如图(6)
, ,
∴ = .
问题3:如何用尺规作角平分线?
9、课本P126 例 2:利用尺规,作 的平分线(图7)
已知: .
求作:射线OC,使 = .
作法:1.在 和 上分别截取 、 ,使 = .
2.分别以 和 为圆心,以 为半径作弧,
两弧在 内交于点 .
3、作 .
就是 平分线.
10、为什么第9题这样就能作出角的平分呢?其中的道理是什么?

三、巩固练习:
11、课本P126 做一做:如图(8)所示,在 中,BD是 的平分线, ,垂足为E.DE与DC相等吗?为什么?

12、如图(9)所示,在△ABC中, ∠C=900,AD平分∠CAB,
且BC=8,BD=5,求点D到AB的距离是多少?

13、已知 ,求作三个内角的平分线(如图(10)).

四、提高题:
一、如图(11),某铁路MN与公路PQ相交于点O且交角为90度,
某仓库G在A区且到公路、铁路距离相离,仓库G到公路与铁路
的相交点O的距离为200m.(1)在图中标出仓库G的位置(比例
尺1:10000.保留作图痕迹);(2)求出仓库G到的实际距离.

5.4 利用轴对称进行设计(P128-129页)
评价:
【学习目标】:1、进一步理解轴对称及其性质,积累数学活动经验,发展空间观念;
2、体会轴对称在现实生活中的广泛应用和丰富的文化价值;
【主要问题】:如何利用轴对称进行图案的设计?
(1)基础知识回顾:
1、下列说法中正确的是( )
(A)角是轴对称图形,它的平分线就 是对称轴
(B)等腰三角形的内角的平分线,中线和高三线合一
(C)直角三角形不是轴对称图形 (D)等边三角形有三条对称轴
2、等腰三角形的一个角为100°,则它的底角为( )
A.100° B.40° C.100°或40° D.不能确定
3、如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求ΔABD的周长.

二、新知识产生过程:
4、下列图案你在生活中见到吗?它们是轴对称图形吗?如果是,请画出它们的对称轴.

5、阅读课本P128“做一做”第1题.
如果先把纸条纵向对折,再折成“手风琴”,然后在上面画上其他图案,会得到怎样的花边,先猜一猜,再做一做,把你得到的花边贴下来.

归纳:在“手风琴”式的折纸中,纸上的折痕是 ,折痕所在的直线的位置关系是 ,而且相邻两条折痕的距离 .
6、阅读课本P128“做一做”第2题.

(1)经过步骤?和步骤?后,在这张正形纸上留下什么样折痕?请在图(1)中画出来.
(2)经过步骤?得到怎样的图案?
(把剪下来的图案贴在下面指定的框内)
(3)将正方形纸按上面方式对折3次,然后沿圆弧剪开(如图(2)),去掉较小的部分,展开后得到怎样的图案? .把图案贴下来.
将正方形纸对折3次后,在纸上留下什么样的折痕,在图(3)中画出.

归纳:在这种对角折纸中,若纸上留下的折痕有n条,那么剪下来的图案至少 条对称轴.
三、巩固练习
7、利用一条线段,一个圆,一个正三角形设计一个轴对称图案,并阐明设计意图。

8、下图是由四个小正方形组成
的L形图案,请你再添加一个
小正方形使它们能组成一个轴
对称图形。(给出三种不同的作法)

9、如图甲,正方形被分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:
(1)涂黑部分的面积是原正方形面积的一半;(2)涂黑部分成轴对称图形.(在所设计的图案中,若涂黑的部分全等则视为同一种涂法,如图乙和图丙属同一种涂法).

第5章 回顾与思考
评价:
学习目标:
1、能梳理本章的知识结构。
2、利用本章的知识解决问题。
一、知识结构回顾
本章所学的内容如下:(请你用一个框架图来进行知识梳理,并与同学交流)
二、回顾练习
1、等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是 (  )
A.9cmB.12cm
C.9cm和12cmD.在9cm与12cm之间
2、观察图7—108中的汽车商标,其中是轴对称图形的个数为 (  )

A.2 B.3 C.4 D.5
3、对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 (  )
A.0 B.1 C.2 D.3
4、下列图形中,不是轴对称图形的是 (  )
A.互相垂直的两条直线构成的图形 B.一条直线和直线外一点构成的图形
C.有一个内角为30°,另一个内角为120°的三角形 D.有一个内角为60°的三角形
5、下列说法中,不正确的是 (  )
A.等腰三角形底边上的中线就是它的顶角平分线 B.等腰三角形底边上的高就是底边的垂直平分线的一部分 C.一条线段可看作以它的垂直平分线为对称轴的轴对称图形 D.两个三角形能够重合,它们一定是轴对称的
6、在等腰△ABC中,AB=AC,O为不同于A的一点,且OB=OC,则直线AO与底边BC的关系为 (  )
A.平行B.垂直且平分
C.斜交D.垂直不平分
7、△ABC中,AB=AC,点D与顶点A在直线BC同侧,且BD=AD.则BD与CD的大小关系为 (  )
A.BD>CD B.BD=CD C.BD<CDD.BD与CD大小关系无法确定
8、在△ABC中,AB=AC,∠A=44°,则∠B= 度.
9、等腰三角形的一个角为50°,则顶角是 度.
10、已知等腰三角形两条边的长分别是3和6,则它的周长等于 .
11、如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC= .
12、如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,交AB于E,若DB=10cm,则AC= .

13、如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE

14、完成课文131—134页复习题。(各班根据实际情况灵活处理课本题)

本文来自:逍遥右脑记忆 https://www.jiyifa.com/chuyi/63128.html

相关阅读:七年级数学上册全册教案(新课标人教版)