北宋的一个夜晚,一家小酒店的老板正和伙计一起堆酒坛。因为近来生意特别好,酒坛自然也就多。老板一边在心里乐,一边盘算着如何发更大的财。他要把酒坛堆得整整齐齐,美观大方,吸引更多的顾客光临酒店。
酒坛堆得非常漂亮,一层一层整整齐齐。酒店门口的招幌迎风飘扬,使人不得不驻足逗留,忍不住想进店喝几盅。酒店老板得意扬扬之际,想数数酒坛一共有多少只。可是,数坛子也并不轻松,老板从前面绕到后面,又从后面绕到前面,刚刚擦干的汗水又冒出来了,伙计们都笑了
第二天。这堆酒坛果然吸引了不少顾客,老板望着酒坛,乐不可支。这时,一位衣冠楚楚的青年书生走了过来,面对酒坛,若有所思。老板心想:我昨天为了数清这堆酒坛,花了很大的功夫,这位青年相貌不凡,我倒要考考他看。
"年轻人,你知道这堆酒坛一共有多少个吗?"老板半开玩笑地问道。
"这很容易,只要你告诉我这堆酒坛最上面的那层一共几排,每排多少个,一共有几层。根本不用数,我马上就知道这堆酒坛的数目。"年轻人这么说话,显然有十足的把握。
"噢!"老板心想:这位年轻人真会说大话,不妨把他提的条件告诉他,看看他的能耐到底有多大。于是老板爽快地说:
"最上面那层酒坛是四排,每排8个,第二层是五排,每排9个……"
"好了,一共七层,"年轻人打断了老板的话,不加思索地报出了答案,"一共567个酒坛。对吗?"
老板一下子惊得连张开的嘴巴也忘记合拢了。这么快!老板马上把年轻人请进酒店,上茶,敬酒,招待得万分周到。老板真是打心眼佩服这位青年,又是请教姓名,又是讨教数坛的方法。
这位青年就叫沈括。优越的家庭生活条件使他有机会读书,加上他好奇心强,肯钻研,于是他就成了很有才学的人。沈括回答老板说:"我数这坛子的方法其实非常简单,因为最中间那层共77个,共七层,只要再乘7,最后加上常数28就行了。"
沈括从小对筹算很感兴趣,读了许多数学名著。后来自己写成了一本数学专著《隙积术》,专门研究高阶等差级数的求和问题。沈括数坛的方法就是利用了高阶等差级数求和的方法,要比单纯地数方便多了。数学上还可能碰到数字更大,项数更多的题目,用这种方法便可一下子迎刃而解。
本文来自:逍遥右脑记忆 https://www.jiyifa.com/chuzhong/1330706.html
相关阅读:九年级数学教学实践与反思