一、因式分解的概念:
多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止。
二、分解因式的常用有:
1.提公因式法;2..公式法;3.十字相乘法;4.分组分解法;5.求根公式法。
三、因式分解的步骤及注意事项:
1.一般步骤:“一提”:先考虑是否有公因式,如果有公因式,应先提公因式;“二套”:再考虑能否运用公式法分解因式,一般的根据多项式的项数选择公式,二项式考虑用平方差公式,三项式考虑用完全平方公式或十字相乘法 初二,更多项的多项式,应分组分解.
2.分解因式需要注意事项:分解因式必须彻底,应进行到每个因式都不能在分解为止;分解因式要注意,是在有理数范围内,还是在实数范围内。
四、分解因式的应用:
1.使一些较复杂的计算简便;2.求一些无法直接求解的代数式的值;3.判断多项式的整除性质;4.与几何中三角形的三边关系结合解决一些综合性问题。
本文来自:逍遥右脑记忆 https://www.jiyifa.com/chuzhong/47262.html
相关阅读:初中数学知识点总结:概率的简单应用