高二数学下学期文科试题

编辑: 逍遥路 关键词: 高二 来源: 高中学习网

一、选择题(本大题共10小题,每小题5分,共50分)
1. “ ”是 “ ”是的( )
A.必要而不充分条件 B.充分而不必要条件
C.充分必要条件 D.既不充分也不必要条件
2. “ ”是“方程 表示焦点在 轴上的双曲线”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
3. 若方程C: ( 是常数)则下列结论正确的是( )
A. ,方程C表示椭圆 w B. ,方程C表示双曲线
C. ,方程C表示椭圆 D. ,方 程C表示抛物线
4.抛物线 的准线方程是( )
A. B. C. D.
5. 函数 在点 处的切线方程是( )
A. B. C . D.
6. 函数 , 的最大值是( )
A. B. -1 C.0 D.1
7. 若抛物线 的焦点与椭圆 的右焦点重合,则 的值为( )
A. B. C. D.
8.已知两点 、 ,且 是 与 的等差中项,则动点 的轨迹方程是 ( )
A. B. C. D.
9.已知对任意实数 ,有 ,且 时 ,
则 时( )
A. B.
C. D.
10. 正三角形 中, 的中点,则以 为焦点且过 的双曲 线的离
心率是( )
A. B. C.2 D.
二、填空题(本大题共4小题,每小题4分,共16分)
11. 不等式 成立,则实数a的取值范围________.新$课$标$第$一$网
12.函数 是 上的单调函数,则 的取值范围为 .
13.设曲线 在点(1, )处的切线与直线 平行,则 .
14. 是过C: 焦点的弦,且 ,则 中点的横坐标是 .
15.双曲线两条渐近线的夹角为60º,该双曲线的离心率为¬¬ .
16. 已知一个动圆与圆C: 相内切,且过点A(4,0),则这个动圆圆心的
轨迹方程是¬ .
17. 对于函数 有以下说法:
① 是 的极值点.
②当 时, 在 上是减函数.
③ 的图像与 处的切线必相交于 另一点.
④若 且 则 有最小值是 .
其中说法正确的序号是_____________.
三、解答题(本大题共5小题,共40分)
18.(本小题满分12分)如图:是 = 的导函数 的简图,
它与 轴的交点是(1,0)和(3,0)
(1)求 的极小值点和单调区间
(2)求实数 的值和极值。

19.(本小题满分12分)已知椭圆x22+y2=1及点B(0,-2),过左焦点F1与B的直线交椭圆于
C、D两点,F2为其右焦点,求△CDF2的面积.

20.(本小题满分13分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量 (升)关于行驶速度 (千米/小时)的函数解析式可以表示为: .已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

21.(本小题满分14分)已知 在区间[0,1]上是增函数,
在区间 上是减函数,又
(1)求 的解析式.
(2)若在区间 (m>0)上恒有 ≤x成立,求m的取值范围.

22.(本小题满分14分)已知点A(2,8),B (x1,y1),C(x2,y2)在抛物线 上,△ABC的重心与此抛物线的焦点F重合(如图)
(1)写出该抛物线的方程和焦点F的坐标;
(2)求线段BC中点M的坐标;
(3)求BC所在直线的方程.

安陆二中 航天中学 曲阳高中 孝昌二中 应城二中 英才学校


三、解答题
18、解:(1)当 时 ,函数 递增
当 时 ,函数 递减
是极小值点 -------6分 (2)由图知 ,
--------9分
-------12分

故S△CDF2=12|CD|•d=4910. --------12分
20.解:(1)当 时,汽车从甲地到乙地行驶了 小时,
耗油 (升) -------5分
答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油 升.
(2)当速度为 千米/小时时,汽车从甲地到乙地行驶了 小时,
设耗油量为 升,依题意得:
-----8分

令 得
当 时, , 是减函数;
当 时, , 是增函数.
故当 时, 取到极小值
因为 在 上只有一个极值,所以它是最小值. ------13分
答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为 升.
21.解:(1) ,由已知 ,
即 解得

, . ------ 7分
(2)令 ,即 ,
, 或 .
又 在区间 上恒成立, ------14分

22.解:(1)由点A(2,8)在抛物线 上,有 ,
解得p=16. 所以抛物线方程为 ,焦点F的坐标为(8,0).------4分
(2)如图,由于F(8,0)是△ABC的重心,M是BC的中点,所以F是线段AM的定比 分点,且 ,设点M的坐标为 ,则 ,(也可由向量求得)
解得 ,所以点M的坐标为(11,-4). ------9分
(3)由于线段BC的中点M不在x轴上,所以BC所在
的直线不垂直于x轴.设BC所在直线的方程为:
由 消x得 ,
所以 ,由(2)的结论得 ,解得
因此BC所在直线的方程为:


本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaoer/1113171.html

相关阅读:2019高二数学必修二测试题[1]