高二数学学习:高二数学函数的性质

编辑: 逍遥路 关键词: 高二学习指导 来源: 高中学习网

为大家提供“高二数学学习:高二数学函数的性质”一文,供大家参考使用:

高二数学学习:高二数学函数的性质

三、函数的性质:

函数的单调性、奇偶性、周期性

单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)

导数法(适用于多项式函数)

复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;

f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。

判别方法:定义法, 图像法 ,复合函数法

应用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.

应用:求函数值和某个区间上的函数解析式。

四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)

平移变换 y=f(x)→y=f(x+a),y=f(x)+b

注意:(?)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。

(?)会结合向量的平移,理解按照向量 (m,n)平移的意义。

对称变换 y=f(x)→y=f(-x),关于y轴对称

y=f(x)→y=-f(x) ,关于x轴对称

y=f(x)→y=fx,把x轴上方的图象保留,x轴下方的图象关于x轴对称

y=f(x)→y=f(x)把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)

伸缩变换:y=f(x)→y=f(ωx),

y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;

以上就是“高二数学学习:高二数学函数的性质”的所有内容,希望对大家有所帮助!


本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaoer/158441.html

相关阅读:高二物理怎么学能学好 高二物理学习方法