信阳市2013~2014学年度高二上期期末数学试卷参考答案(理科)1.D ∵>0,x>3或x<2. ?p:,x-10.3.A ∵=,===.4 a7-2a=a+4d-2(a+d)=2d=-1,解得d=-.抛物线过点(1,4),4=2a,a=2,抛物线方程为x=y,焦点坐标为(0,). AB==3,设正方体的棱长为a,则a=3,解得a=,所以正方体的体积为3. 作出可行域可知目标函数过点(2,-1)时取得最大值为z=22-1=3.8 由3S=a-2,3S=a-2,所以3(S-S)=a-a,得=4=q.角A、B、C成等差数列,解得B=由=,可得=,b>a,A<,A=,从而C=--=,=ab=.a1a4=a=-,+++=+===-.11.C 由m>n>0知m-n>0,m+=m+=m-n+2=4,当且仅当m-n=2时取等号. 因为M在抛物线上,所以设点M(x,),又因为到抛物线焦点(,0)的距离为p,所以有(x-)+2px=p,解得x=或x=(舍).设A(x,y),B(x,y),因为M为AB的中点,所以x+x=p,y+y=2p,所以=2,又因为AB是双曲线上的点,所以满足()-()=1,(2-()=1,则(y-y)÷(x-x)=,=2=2k=e-1,所以k=. ∵a1=,2a-=2,a2=,则2a-=2a-=2,得a=.-14 不等式的解集为(-,),方程ax+bx+c=0的两根分别为x=-,x=.x1?x2==-得a=-12,+x=-=-得b=-2.+b=-14. +=32?≥2?ab≥4.16. 不妨设F(-c,0),点P(x,y),另一焦点为F(c,0),连接PF,根据题意有PF,PF=2b,所以PF===2由PF+=2+2b=2a,化简得2ab=a-c+2b=3b,所以b=a,c==a,故离心率为=.17解:()设{a的公差为d,{b的公比为q,∴∴an=2n-2.(6分)()∴=,3q-4q-4=0,q=2或-(舍),b=1,===2-1.(12分)解:A={x-1x≤3,xR},B={xm-3x≤m+3,xR,mR}.()∵A∩B=[2,3],m-3=2,即m=5.分(Ⅱ) ∵p是?q的充分条件, A?RB,-3>3或m+36或m0),则=(1,2,0),=(-1,0,m).设平面CDE的法向量为n=(x,y,z),则n?=0,n?=0,令x=2,y=-1,z=,n=(2,-1,). 又平面ACD的法向量为=(0,0,2),〈n,〉=,即==,解得m=1,点E的坐标是(0,0,1),AE的长为1.在侧棱PA上存在一点E,使得平面CDE与平面ADC所成角的余弦值是.分)解:()由(2分)得所以椭圆方程为+y=1.(4分)()设P(x,y),Q(x2,y),设直线PQ的方程为x=my+t,代入+y=1得(m+4)y+2mty+t-4=0,(5分), =,k=,由=7得=7,所以=49,所以=49,(7分)得=49,得12x+25(x+x)+48=0, x1x2=(my+t)(my+t)=,+x=(my+t)+(my+t)=, 代入得6t+25t+24=0,得t=-,或t=-(是增根,舍去),(9分)所以(10分)所以y-y=(y+y)2-4y==-36()+16=-36(-)2+,当m=时取最大值.(11分)所以S-S=3×y1-y,所以S-S的最大值为2.(12分)22证明:()∵CF=FG,BGC=ACE.∵AB是O的直径,GCB=90,,AEC=90,CBG=90-BGC,EAG=90-ACE,(D)=EAG(C),=,C是的中点.5分(Ⅱ)∵∠ECB=90-ECA,EAC=90-ECA,=EAC.又由()知,CBG(D)=EAG(C),E(F)CB=CBF(G),CF=BF.又CF=FG,BF=FG.10分23.解:()把化为普通方程为x+2y+2-a=0,把ρ=2(θ+)化为直角坐标方程为x+y-2x+2y=0,其的圆心C的坐标为(1,-1),半径为,圆心C到直线l的距离d===.6分(Ⅱ)由已知(2+()=(),a2-2a=0,即a=0或a=2.10分24.解:()由2x-a+a6得2x-a6-a,-62x-a6-a,即a-3x≤3,-3=-2,a=1.4分(Ⅱ)由()知f(x)=2x-1+1,令φ(n)=f(n)+f(-n),则φ(n)=2n-1+2n+1+2(2n-1)-(2n+1)+2=42n-1)(2n+1)0,即-n≤时取等号.φ(n)的最小值为4,故实数m的取值范围是[4,+).(10分河南省信阳市2013-2014学年高二上学期期末考试数学(理)试题(扫描版,文档答案)
本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaoer/245451.html
相关阅读:河南省郑州市高二上学期期末考试试题(数学 文)