高二数学必修4第二单元知识点:平面向量的实际背景及基本概念

编辑: 逍遥路 关键词: 高二学习指导 来源: 高中学习网

数学在科学发展和现代生活生产中的应用非常广泛,小编准备了高二数学必修4第二单元知识点,具体请看以下内容。

1、数量与向量的区别:

数量只有大小,是一个代数量,可以进行代数运算、比较大小;

向量有方向,大小,双重性,不能比较大小.

2.向量的表示方法:

①用有向线段表示;

②用字母a、b

(黑体,印刷用)等表示;

③用有向线段的起点与终点字母: ;

④向量 的大小——长度称为向量的模,记作| |.

3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.

向量与有向线段的区别:

(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;

(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.

4、零向量、单位向量概念:

①长度为0的向量叫零向量,记作0. 0的方向是任意的.

注意0与0的含义与书写区别.

②长度为1个单位长度的向量,叫单位向量.

说明:零向量、单位向量的定义都只是限制了大小.

5、平行向量定义:

①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.

说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.

6、相等向量定义:

长度相等且方向相同的向量叫相等向量.

说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;

(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.

7、共线向量与平行向量关系:

平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).

说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.

高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学必修4第二单元知识点,希望大家喜欢。


本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaoer/447794.html

相关阅读:高二历史《启蒙运动》教学指导