相关性教案

编辑: 逍遥路 关键词: 高二 来源: 高中学习网


相关性-备资料
学习导航学习提示
1.能根据数据,利用计算机制出反映两个变量间关系的散点图.
2.能根据散点图判断变量间是否为线性相关.
3.若两个变量为线性相关,告诉一个变量的值,能估计出其对应另一变量的值.本节重点是能根据散点图,判断两个变量是否为线性相关;难点是根据一个变量的值估计出另一个变量的值.
教材习题探讨方法点拨
练习(第59页)
解:(1)散点图如图1-8-13.

图1-8-13
(2)从散点图1-8-13中可以看出气温越低,销售热茶的杯数越多,近似地成一条直线,成线性相关.
(3)画一条直线近似地表示这种线性关系(如图1-8-13).
(4)如果某天的气温为-5℃,则这天的热茶卖出的杯数大约为67杯.
习题1—8
1.解:(1)第一步,先抽取样本.为使抽取的样本具有广泛的代表性,我们可采取分层抽样,按身高分层.
第二步,对样本中的每个个体进行测量,把测得的数据填入下表.
身 高右手一?长身 高右手一?长
第三步,根据得到的数据画出散点图.
第四步,根据散点图,写出分析.
(2)利用前面抽取的样本,测量每个个体的左、右手的一?长,填入下表.
左手一?长右手一?长身 高右手一?长
其余同(1).
2.解:(1)散点图如图1-8-14.

图1-8-14
(2)从散点图1-8-14中可以看出,总体上体重随身高增大而增大,近似地成一条直线,成线性相关.
(3)所画直线如图1-8-14.
(4)身高为172 cm的运动员,他的体重大约为61 kg.
3.解:(1)散点图如图1-8-15.

图1-8-15
我们从散点图1-8-15中可以发现,年龄与最大可识别距离总体趋势成一条直线,它们之间是线性相关的.
(2)所画直线如图1-8-15.
(3)如果一个美国司机年龄是50岁,估计他最大可识别距离为440英尺左右.
(4)一般情况,年龄越大,可识别最大距离越小.老年司机开车时车速应比年青人要小一些.
4.解:

图1-8-16
图1-8-16为年龄与肝功能原始值的散点图,由散点图可以看出年龄与肝功能原始值之间成线性相关.同样,年龄与肝功能对数变换值之间也成线性相关.

图1-8-17
图1-8-17是年龄与生存天数原始值的散点图.由散点图可以看出年龄与生存天数原始值之间成线性相关.同样年龄与生存天数对数变换值之间也成线性相关.

图1-8-18
图1-8-18为肝功能原始值与生存天数原始值之间的散点图.由散点图可以看出它们之间成线性相关.同样,肝功能对数变换值与生存天数对数变换值之间也成线性相关.利用计算机电子表格软作散点图,由散点图推断它们之间是否线性相关.


本解答只提供步骤方法,具体由学生根据学过的方法知识、实际数据完成答案,然后互相交流比较.


我们用计算机电子表格软作散点图,由散点图推断身高与体重之间成线性相关,画出近似直线.由直线再估算身高为172 cm的体重.

同学们一定要熟练应用计算机电子表格软作散点图.

本题散点较多,如果用手工描图工作量非常大,故熟练应用现代计算机信息技术,利用计算机电子表格软作散点图效率很高且比较准确.

互动学习知识链接
1.在现实生活中,请你举出几个两个量之间存在明确函数关系的例子.
2.请在现实生活中举出两个变量不满足函数关系,但二者确实有关系的例子.
解:1.圆的半径r和面积S,有着S=πr2的关系.工作效率a和工作量W,有着W=at的关系.物体的质量m和体积V,满足m=ρV的关系.
2.(1)商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关.
(2)粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素,因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响.
(3)人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等因素有关,可能还与个人的先天体质有关.
在现实生活中,有些量之间存在着函数关系,还有很多量之间不满足函数关系,但二者之间确实有关系,这种关系正是本节所要研究的问题.

知识
两个变量间的关系有两种:一种是函数关系;另一种是相关关系.理解两种关系的定义及两者之间的联系.另外散点图非常重要,要会画散点图,并会根据散点图判断两个变量间是何种关系.




本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaoer/52909.html

相关阅读:正切函数的定义