爱德外国语学校2015学年第一学期高二数学(文)期中试题 命题范围:圆锥曲线、空间几何体一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆的焦距为( )A.10 B.5 C. D.2.到两定点、的距离之差的绝对值等于6的点的轨迹( )A.椭圆B.线段C.两条射线D.双曲线3的焦点到准线的距离是 ( )A.B.C.D.,那么正方体的棱长等于 ( )A. B. C. D.5.若某几何体的三视图如图所示,则此几何体的体积是()A.B.C.D.6若命题:,:,则是的( ) A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件7抛物线的准线与双曲线的两渐近线围成的三角形的面积( )A.B.C.2D.8设,是椭圆:=1(>>0)的左、右焦点为直线上一点△是底角为的等腰三角形则的离心率为( )A.B.C.D.9若点是以、为焦点实轴长为的双曲线与圆的一个交点则的值为( )A.B.C.D.10设抛物线C: x的焦点为直线过F且与C交于A, B两点若AF=3BF,则L的方程为( )A.或B.或C.或D.或二、填空题(本大题共7小题,每小题4分,共28分)11命题若,则为_________命题(填真或假)12若抛物线的焦点坐标为(,1),则准线方程为_____.13已知,”是“”的充分不必要条件的取值范围为__________14.在平面直角坐标系中,若双曲线的离心率为,则的值为____. 15一个动点P在圆上移动时,它与定点A(3,0)连线的中点M的轨迹方程为_________,侧面积是底面积的倍,则这个棱锥的高是 17.已知点P是抛物线上的动点点P在y轴上的射影是M点A 的坐标是(4, a)则当时的最小值是____________.()求适合下列条件的双曲线的标准方程(I)求以椭圆的焦点为焦点,以直线为渐近线翰林汇(II) 双曲线的两条对称轴是坐标轴,实轴长是虚轴长的一半,且过点(3,2)19.(14分)右图几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面积和体积。20.(14分)已知抛物线顶点在原点,焦点在x轴上,又知此抛物线上一点到焦点的距离为(I)求此抛物线的方程;(II)若此抛物线方程与直线相交于不同的两点,且中点横坐标为,求的值设椭圆的中心为坐标原点,焦点在轴上,焦距为,为右焦点,为下顶点,为上顶点,.(I)求椭圆的方程;(Ⅱ)若直线同时满足下列三个条件:①与直线平行;②与椭圆交于两个不同的点;③,求直线的方程.22.(15分)已知椭圆的两个焦点分别为,,离心率为,过的直线与椭圆交于,两点,且△的周长为.(Ⅰ)求椭圆的方程;(Ⅱ)过原点的两条互相垂直的射线与椭圆分别交于,两点,证明:点到直线的距离为定值,并求出这个定值.附加题20分椭圆的焦点到直线的距离为,离心率为,抛物线的焦点与椭圆的焦点重合;斜率为的直线过的焦点与交于与交于.(1)求椭圆及抛物线的方程;(2)是否存在学常数,使为常数,若存在,求的值,若不存在,说明理由.1(第5题图)浙江省嵊州爱德外国语学校2015-2016学年高二第一学期期中考试数学(文)试题(无答案)
本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaoer/589815.html
相关阅读:高二数学期中考试试题及答案[1]