舒城中学第一学期期末考试高二理数试卷(总分:120分 时间:150分钟)命题人:束观元 审题人:徐建存一.选择题(10个小题,共50分)1.”是“”的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件.在直线的 ( )A.B.C.D..中,G点为的重心,则A.B.C.D.4.设椭圆的两个焦点分别为、,椭圆轴的点,若为等腰直角三角形,则椭圆的离心率是A.B.C.D..小组有3名男生和2名女生,从中任选2名同学参加,那么是A. B. C. D.6.如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图.设1,2两组数据的平均数依次为和,标准差依次为和,那么 A. B. C. D. 7.的焦点F作直线交抛物线于两点,若,则的值为 ( ) A.5 B.6 C.8 D.10.若直线与曲线有公共点,则b的取值范围是 A. B. C. D. 9.曲线上的点 B.2 C.1 D. -110.椭圆的左、右顶点分别为,点在上且直线的斜率的取值范围是,那么直线斜率的取值范围是 ( )A. B. C. D.二.填空题(5个小题, 共25分)11.命题:“,”的否定 12.如图所示,在三棱柱ABC—A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E、F分别是棱AB、BB1的中点,则直线EF和BC1的夹角是 13.据《》报道,20年月1日至20年月1日,全查处酒后驾车和醉酒驾车共28800人,对这28800人血液中酒精含量进行检测所得结果的频率分布直方图,、、……、(例如表示血液酒精浓度在0~0 mg/100ml的人数),图4是对图3中血液酒精浓度在________.14.函数在区间上的最大值是 ①已知定点和动点,且满足所在直线斜率之积为2,则动点连同点的轨迹为双曲线; ②已知圆,圆,有一动圆在圆的内部且和圆内切,和圆相外切,则动圆圆心的轨迹为椭圆; ③已知正方体中, P是侧面内的动点,若P到直线和直线的距离相等,则动点P的轨迹是线段; 第15—③图 ④已知正方体中,为AB中点,棱长为2,P是底面ABCD上的动点,且满足条件,则动点P在底面ABCD上形成的轨迹是圆. 其中正确命题的序号是 三、解答题(本大题共6小题,满分75分. 解答须写出文字说明、证明过程和演算步骤)16.(本小题满分12分) 第15—④图 为单调递增。当p、q有且仅有一个为真命题时,求m的取值范围.17.有7位(1至7号)歌唱,由500名现场投票.根据年龄将分为五组,各组的人数如下:组别ABCDE人数10050150501501)为了调查对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干,其中从组抽取了6人,请将其余各组抽取的人数填入下表.组别ABCDE人数1005015050150抽取人数62)在1)中,若A,B两组被抽到的中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.如图所示,已知四棱柱中,⊥底面ABCD,底面ABCD是边长为1的正方形,侧棱(1)求证:(2)求直线与平面所成角的正弦值;(3)求二面角的余弦值. 第(18)题图19.(本小题满分13分) 舒城某运输公司接受了向我县偏远地区每天送至少生活物资的任务.该公司有8辆载重的型卡车与辆载重为的型卡车,有名驾驶员,每辆卡车每天往返的次数为型卡车次,型卡车次;每辆卡车每天往返的成本费型为元,型为元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低?若只安排型或型卡车,所花的成本费分别是多少? 20.(本小题满分13分) 已知函数 (1)若,求函数的极值; (2)讨论函数的单调性.21.(本小题满分13分) 如图,分别是的左,右焦点过点作轴的垂线交的上半部分于点,过点作直线的垂线交直线于点若点的坐标为求的方程处的切线方程; (2)证明:直线与只有一个交点上任一点作双曲线的两条切线,切点分别为,问:直线是否过定点,若过定点,请求出该定点;否则,请说明理由.舒中高二期末理数 第1页 (共4页)舒中高二期末理数 第2页 (共4页)图3第(21)题图PQ舒中高二期末理数 第3页 (共4页)舒中高二期末理数 第4页 (共4页)安徽省舒城中学高二上学期期末考试理数试题 Word版无答案
本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaoer/723019.html
相关阅读:高二年级数学(理)期末试卷