中山市2013—2014学年度第一学期期末统一考试本试卷共4页,20小题,满分150分.考试用时120分钟.一、选择题:本大题共10小题,每小题5分,共50分. DAAD CBBCB二、填空题:本大题共6小题,每小题5分,满分30分.11. ; 12.; 13. ; 14. 三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.本题满分12分设平面向量,,函数。(Ⅰ)求函数的值域和函数的单调递增区间;(Ⅱ)当,且时,求的值.15.解: 依题意………(2分) ………………………………………………(4分)(Ⅰ) 函数的值域是;………………………………………………(5分)令,解得………………(7分)所以函数的单调增区间为.……………………(8分)(Ⅱ)由得,因为所以得,………………………(10分)……………………………………………………………………(12分)16本题满分12分某学校餐厅新推出四款套餐,某一天四款套餐销售情况的条形图如下为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:满意一般不满意A套餐50%25%25%B套餐80%020%C套餐50%50%0D套餐40%20%40%(Ⅰ)若同学甲选择的是A款套餐,求甲的调查问卷被选中的概率;(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面 谈,求这两人中至少有一人选择的是D款套餐的概率. 解:(Ⅰ)由条形图可得,选择A,B,C,D四款套餐的学生共有200人, 其中选A款套餐的学生为40人, 由分层抽样可得从A款套餐问卷中抽取了 份. …………….设事件=“同学甲被选中进行问卷调查”, 则 . ……………………………………………………….(5分)答:若甲选择的是A款套餐,甲被选中调查的概率是. …………….6分)(II)由图表可知,选A,B,C,D四款套餐的学生分别接受调查的人数为4,5,6,5. 其中不满意的人数分别为1,1,0,2个 . ………………………….(7分)记对A款套餐不满意的学生是a;对B款套餐不满意的学生是b;对D款套餐不满意的学生是c,d. ………………………………………………….8分)设事件N=“从填写不满意的学生中选出2人,至少有一人选择的是D款套餐”从填写不满意的学生中选出2人,共有(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)6个基本事件,而事件N有(a,c),(a,d),(b,c),(b,d),(c,d)5个基本事件, ………………………10分)则. ………………………………………………………(12分)17.本题满分14分如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于, 四边形ABCD是正方形.(Ⅰ)(Ⅱ)(Ⅰ)AE下底面,又下底面,…………………………….3分又截面ABCD是正方形,所以⊥,又⊥面,又面,……………………………(7分)(Ⅱ)(Ⅰ)⊥面面⊥面又面面面,面,即EO就是的边长为, 则,又,为直径,即在中,, 即,……………………………………………………………(12分)18.(本小题满分14分)数列{}的前n项和为,.(I)设,证明:数列是等比数列;(II)求数列的前项和;(Ⅲ)若,.求不超过的最大整数的值。1.【解析】(1) 因为,所以 ① 当时,,则,………………………………(2分② 当时,,…………………分所以,即,所以,而,……………………(6分所以数列是首项为,公比为的等比数列,所以.………分(2)由(1)得.所以 ①,②,……………(9分②-①得:,……………(12分. ………………(14分19.(本小题满分14分) 已知函数,.(I)若,且对于任意恒成立,试确定实数的取值范围;(II)设函数,求证:19. 解:(Ⅰ)由可知是偶函数.于是对任意成立等价于对任意成立.………1分由得.①当时,.此时在上单调递增. 故,符合题意.3分②当时,.当变化时的变化情况如下表:………………………(4分单调递减极小值单调递增由此可得,在上,.依题意,,又.综合①,②得,实数的取值范围是.……………………(7分(Ⅱ),又, …………………………………………………………………10分, ……………………………………………12分由此得:故成立. …………………14分20.已知函数,,,其中,且.⑴当时,求函数的最大值; ⑵求函数的单调区间;⑶设函数若对任意给定的非零实数,存在非零实数(),使得成立,求实数的取值范围.解:⑴当时, ∴令,则, ∴在上单调递增,在上单调递减∴ ………………………4分⑵,,()∴当时,,∴函数的增区间为,当时,,当时,,函数是减函数;当时,,函数是增函数。综上得,当时,的增区间为; 当时,的增区间为,减区间为 ………10分 ⑶当,在上是减函数,此时的取值集合;当时,,若时,在上是增函数,此时的取值集合;若时,在上是减函数,此时的取值集合。对任意给定的非零实数,①当时,∵在上是减函数,则在上不存在实数(),使得,则,要在上存在非零实数(),使得成立,必定有,∴;②当时,在时是单调函数,则,要在上存在非零实数(),使得成立,必定有,∴。综上得,实数的取值范围为。 ……………14分!第4页 共10页学优高考网!!广东省中山市2014届高三上学期期末考试(数学文)扫描版
本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaosan/234480.html
相关阅读: