1.(15分)(广东省佛山市质检)如左图所示,水平光滑绝缘桌面距地面高h,x轴将桌面分为Ⅰ、Ⅱ两个区域。右图为桌面的俯视图,Ⅰ区域的匀强电场场强为E,方向与ab边及x轴垂直;Ⅱ区域的匀强磁场方向竖直向下。一质量为m,电荷量为q的带正电小球,从桌边缘ab上的M处由静止释放(M距ad边及x轴的距离均为l),加速后经x轴上N点进入磁场,最后从ad边上的P点飞离桌面;小球飞出的瞬间,速度如图与ad边夹角为60o。求:⑴小球进入磁场时的速度;⑵Ⅱ区域磁场磁感应强度的大小⑶小球飞离桌面后飞行的水平距离。 ③2. (17分)如图甲所示,两平行金属板接有如图乙所示随时间t变化的电压U,两板间电场可看作均匀的,且两板外无电场,板长L0.2 m,板间距离d0.2 m.在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板中线OO′垂直,磁感应强度B5×10-3T,方向垂直纸面向里.现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子速度v0105 m/s,比荷q/m108 C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的.(1)试求带电粒子射出电场时的最大速度; ()从电场射出的带电粒子,进入磁场运动一段时间后又射出磁场,求粒子在磁场中运动的最长时间和最短时间. (4分)3.(19分)(吉林市期末质检)如图所示,一带电粒子以与水平方向成60°角速度在竖直平面内做直线运动,经过一段时间后进入一垂直于纸面向里、磁感应强度为B的圆形匀强磁场区域(图中未画出磁场区域),粒子飞出磁场后垂直电场方向进入宽为L的匀强电场。 电场强度大小为E,方向竖直向上。当粒子穿出电场时速度大小变为原来的倍。 已知带电粒子的质量为m,电量为q,重力不计。求:(1)粒子带什么电?简述理由;(2)带电粒子在磁场中运动时速度多大;(3)该圆形磁场区域的最小面积为多大。解析.(19分)(1)根据粒子在磁场中偏转的情况和左手定则可知,粒子带负电.(2分)(2)由于洛伦兹力对粒子不做功,故粒子以原来的速率进入电场中,设带电粒子进入电场的初速度为v0,在电场中偏转时做类平抛运动,解得(2分)4.(安徽省合肥市一模)在如图a所示的空间里,存在方向水平垂直于纸面向里的匀强磁场和竖直向上的周期性变化的电场(如图b所示),周期T=12t0,电场强度的大小为E0,E>0表示电场方向竖直向上。一倾角为300足够长的光滑绝缘斜面放置在此空间。t=0时,一带负电、质量为m的微粒从斜面上的A点由静止开始沿斜面运动,到C点后,做一次完整的圆周运动,在t=T时刻回到C点,再继续沿斜面运动到t=13t0时刻。在运动过程中微粒电荷量不变,重力加速度为g,上述E0、m、t0、g为已知量。求微粒所带电荷量q和磁感应强度大小B;求0~2T时间内微粒经过的路程。第二次做圆周运动的速度,半径是第一次的两倍时间内的路程所以时间内的总路程为 你5(15分)(甘肃省五市联考)如图所示,直线OA与x轴成135°角,x轴上下方分别有水平向右的匀强电场E1和竖直向上的匀强电场E2,且电场强度E1=E2=10N/C,x轴下方还存在垂直于纸面向外的匀强磁场B,磁感应强度B=10T。现有一质量m=1.0×10-5kg,电荷量q=1.0×10-5C的带正电尘粒在OA直线上的A点静止释放,A点离原点O的距离d=m(g取10m/s2,).求:(1)尘粒刚进入磁场区域时的速度v的大小;(2)从进入磁场区域开始到离开磁场区域所经历的时间t;(3)第一次回到OA直线上的某位置离原点O的距离L。 (3)出磁场后尘粒在电场E1中做类平抛运动OC=R=t1====0.1s 2分B位置离原点O的距离L大小为L=OC?sin45-at2=R-at2=0.13m 2 分6(南通第一次调研).(16分)如图所示,在长度足够长、宽度d=5cm的区域MNPQ内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T.水平边界MN上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C.现有大量质量m=6.6×10-27kg、电荷量q=3.2×10-19C的带负电的粒子,同时从边界PQ上的O点沿纸面向各个方向射入磁场,射入时的速度大小均为v=1.6×106m/s,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r;(2)求与x轴负方向成60°角射入的粒子在电场中运动的时间t;(3)当从MN边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程.则仍在磁场中的粒子的初速度方向与x轴正方向的夹角范围为30°~60°(3分)所有粒子此时分布在以O点为圆心,弦长0.1m为半径的圆周上 (1分)曲线方程为 (R=0.1m,≤x≤0.1m) 7(北京海淀期末).(8分)如图14所示,空间同时存在水平向右的匀强电场和方向垂直纸面向里、磁感应强度为B的匀强磁场。质量为m,电荷量为q的液滴,以某一速度沿与水平方向成角斜向上进入正交的匀强电场和匀强磁场叠加区域,在时间t内液滴从M点匀速运动到点。重力加度为。(1)判定液滴带的是正电还是负电,并画出液滴受力示意图;(2)求匀强电场的场强E的大小;(3)求液滴从M点运动到点的过程中电势能的变化量。.(18分)如下图(甲)所示,一竖直放置的边长为L的正方形导线框,其内有垂直框面向外的均匀变化的磁场,磁场变化如图(乙)所示。导线框两端连平行板电容器M、N,M、N的长度和它们之间的距离都是d。(1)一质子沿M、N两板正中央水平射入,恰好打在N板中点。已知质子的质量和电量分别为m、e,求M、N两板间的电压UMN和质子入射的初速度v0 。(2)若在M、N间加一垂直纸面的磁场B,质子以初速度v入射时恰好沿直线通过两板,求M、N间所加磁场B的大小和方向。(3)若在M、N的右侧有一垂直M、N板的长接收板P,且在接收板与M、N间也存在(2)中所加的同样大小与方向的磁场B,则质子以直线通过M、N板之后恰好没有碰到P板。求M板右端到P板的距离。由牛顿第二定律和电场力公式可得: ⑦ (2分)由以上式子解得: ⑧(1分)9(北京海淀期末).(10分)图18甲所示,平行金属板PQ、MN水平地固定在地面上方的空间,金属板长 l=20cm,两板间距d=10cm,两板间的电压=100V。在距金属板M端左下方某位置有一粒子源A,从粒子源竖直向上连续发射速度相同的带电粒子,射出的带电粒子在空间通过一垂直于纸面向里的磁感应强度B=0.20T的圆形区域匀强磁场(图中未画出)后,恰好从金属板 PQ左端的下边缘水平进入两金属板间,带电粒子在电场力作用下恰好从金属板MN的右边缘飞出。已知带电粒子的比荷=2.0×106C/kg,粒子重力不计,计算 求: (1)带电粒子射人电场时的速度大小; (2)圆形匀强磁场区域的最小半径; (3)若两金属板间改加如图乙所示的电压,在哪些时刻进入两金属板间的带电粒子不碰到极板而能够飞出两板间。时刻进入电场的粒子穿过电场时的偏转量为:>d=10cm,粒子将打在MN板上。同理,t=2.0、4.0、 MN板,磁场的磁感应强度为B。(1)求小球离开O点后第一次经过y轴所用的时间;(2)求小球离开O点后第三次经过y轴的坐标;(3)若小球从O点以某一初速度沿与x轴正方向成135°角的方向射出且能再次回到O点,则该初速度的大小为多少?O160°60°60°第16题乙答图yxNMOBQPOO2高考期末一模联考物理新题精选分类解析 专题29 带电小球在复合场中的运动
本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaosan/685368.html
相关阅读:高考物理总复习牛顿运动定律的应用练习(4)(附答案)