【福州市3月质检】福建省福州市届高三毕业班质检数学理试题 扫描

编辑: 逍遥路 关键词: 高三 来源: 高中学习网
试卷说明:

福州市高中毕业班质量检测数学(理科)试卷参考答案及评分标准1—10 DABCA DCBBD11.96 12. 13.0 14.18+ cm2 15.804216. 解:(I)甲厂抽取的样本中优等品有7件,优等品率为 乙厂抽取的样本中优等品有8件,优等品率为………………4分 (II)的取值为1,2,3. ………………5分………………7分………………9分………………11分 所以的分布列为 1 2 3 ………………12分故………………13分 17. 解:(I)==……………2分 令,解得即…………4分,f(x)的递增区间为 ………………6分 (Ⅱ)由,得而,所以,所以得因为向量与向量共线,所以,由正弦定理得:     ①……………10分由余弦定理得:,即a2+b2-ab=9 ②………12分由①②解得……………13分18. 解Ⅰ)证明:∵点、分别是、的中点∴EF//BC 又∴AE⊥EF,∵平面AEFD⊥平面EBCF,∴AE⊥平面EBCF,AE⊥EF,AE⊥BE, 又BE⊥EF,如图建立空间坐标系E?xyz.……………2分翻折前连结AC交EF于点G,此时点G使得最小.EG=BC=2又∵EA=EB=2.则A0,0,2),B(2,0,0),C(2,4,0), D(0,2,2),E(0,0,0),G(0,2,0),∴=(?22,2),=(-2,-2,0)∴=(?22,2)(-2,-2,0)=0,∴⊥………………分Ⅱ)解法一:设EG=k∥平面点D到平面EFCB的距离为即为点A到平面EFCB的距离. [(3- k)+4]×2=7-k=又=,,=,即EG=1…………………分设平面DBG的法向量为∵G(0,1,0),∴(-22,2), 则 即 取x=1则y=2z=1,∴ …………………10分 面BCG的一个法向量为 则cos= …………………1分由于所求二面角D-BF-C的平面角为锐角所以此二面角平面角的余弦值为 ……………………13分Ⅱ)解法二由解法一得EG=1过点D作DHEF垂足H过点H作BG延长线的垂线垂足O,连接OD. ∵平面AEFD⊥平面EBCF DH平面EBCF,ODOB所以就是所求的二面角的平面角. …………9分由于HG=1,在OHG中,又DH=2,在DOH中…………11分所以此二面角平面角的余弦值为.…………13分19. 解: (Ⅰ)设动圆圆心M(x,y),点M的轨迹是以(1,0)为焦点,直线x=-1为准线的抛物线………分其方程为y2=4x.- …………分Ⅱ)设A(x1,y1),B(x2,y2).由题意得x1≠x2(否则)且x1x2≠0,则所以直线AB的斜率存在,设直线AB的方程为y=kx+b,则将y=kx+b与y2=4x联立消去x,得ky2-4y+4b=0由韦达定理得-------※…………分①当=时,所以,…………所以y1y2=16,又由※知:y1y2=所以b=4k;因此直线AB的方程可表示为y=kx+4k,所以直线AB恒过定点(-4,0). …………②当为定值时.若=,由①知,直线AB恒过定点M(-4,0) …………当时,由,得==将※式代入上式整理化简可得:,所以,…………此时,直线AB的方程可表示为y=kx+,所以直线AB恒过定点…………所以当时,直线AB恒过定点(-4,0).,当时直线AB恒过定点.…………I)f(x)的定义域为.其导数………1分①当时,,函数在上是增函数;…………2分②当时,在区间上,;在区间(0,+∞)上,.所以在是增函数,在(0,+∞)是减函数. …………4分(II)当时, 取,则, 不合题意.当时令,则………6分问题化为求恒成立时的取值范围. 由于 ………7分在区间上,;在区间上,.的最小值为,所以只需即,,………9分(Ⅲ)由于当时函数在上是增函数,不满足题意,所以构造函数:()………11分则所以函数在区间上为减函数. ,则,于是,又,,由在上为减函数可知.即…………………14分21. (1)(本小题满分7分)选修4-2:矩阵与变换: (Ⅰ)法一:依题意,.. ………… 2分所以…………4分法二:的两个根为6和1,故d=4,c=2. …………2分所以-…………4分(Ⅱ)法一:=2-…………5分A3=2×63-13=…………7分法二:A3=…………7分 (2)(本小题满分7分)选修4-4:坐标系与参数方程.解:(Ⅰ)(曲线C的直角坐标方程为y2=4x, 直线l的普通方程x-y-2=0. ………..4分(Ⅱ)直线的参数方程为(t为参数),代入y2=4x, 得到,设M,N对应的参数分别为t1,t2则所以PM+PN=t1+t2=…………7分(3) )(本小题满分7分)选修4-5:不等式选讲 解:(Ⅰ)法1: f(x)=x-4+x-3≥(x-4)-(x-3)=1,故函数f(x)的最小值为1. m=1. …………4分 法2:.------------------1分x≥4时,f(x)≥1;x1,3≤x
本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaosan/725778.html

相关阅读:高三下册数学理科期末试卷及答案