【解析版】浙江省宁波市八校2013-2014学年高一上学期期末联考试

编辑: 逍遥路 关键词: 高一 来源: 高中学习网
试卷说明:

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,,则等于( )A. B. C. D.2.若,且,则是( )A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.若,,则向量在向量方向上的投影为( )A. B. C. D. 4.设,,,则( )A.B. C.D.【答案】B5.函数的图象为( )6.下列函数中,既是偶函数又在区间上单调递增的函数是( )A. B. C. D.7.种计算机病毒是通过电子邮件进行传播的,下表是某公司前5天监测到的数据:第天12345被感染的计算机数量(台)则下列函数模型中能较好地反映计算机在第天被感染的数量与之间的关系的是( )A. B. C. D. 8.若圆中一段弧长正好等于该圆外切正三角形的边长,设这段弧所对的圆心角是,则的值所在的区间为( )A. B. C. D.9.如图所示,是圆上的三个点,的延长线与线段交于圆内一点,若,10..在平面直角坐标系中,如果不同的两点,在函数的图象上,则称是函数的一组关于轴的对称点(与视为同一组), 则函数关于轴的对称点的组数为( ) (第9题图)A. B. C. D. . 第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.已知,且为第一象限角,则 .考点:诱导公式、三角函数之间的关系.12.已知函数 那么 的值为 .13.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动个单位长度,所得图象的函数解析式为 .14.若,且,则角的取值范围是 .15.如图,在边长为1的正六边形中,,16.已知函数,且.当时,函数 的零点,,则 .17.对任意两个非零的平面向量和,定义,若平面向量满足:,与的夹角,且和都在集合中,则 .三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 18.已知平面上三个向量,其中.(1)若,且∥,求的坐标;(2)若,且,求与夹角.19.设函数的定义域为集合,函数的定义域为集合(其中,且).(1)当时,求集合;(2)若,求实数的取值范围.20.已知点在函数的图象上,直线、是图象的任意两条对称轴,且的最小值为.(1)求函数的单递增区间和其图象的对称中心坐标;(2)设,,若,求实数的取值范围.【答案】(1)函数的单递增区间为,图象的对称中心坐标(2),当时恒成立21.已知函数(为常数,且).(1)当时,求函数的最小值(用表示);(2)是否存在不同的实数使得,,并且,若存在,求出实数的取值范围;若不存在,请说明理由.根,作出函数图象,可得. 22.已知函数,,. (1)若,试判断并证明函数的单调性; (2)当时,求函数的最大值的表达式.②当时,在上是增函数,在上是减函数, 当时,,当时,函数取最大值为;…………13分 www.gkstk.com 每天发布最有价值的高考资源 每天发布最有价值的高考资源 1 1 每天发布最有价值的高考资源www.gkstk.com【解析版】浙江省宁波市八校2013-2014学年高一上学期期末联考试题(数学)
本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaoyi/243165.html

相关阅读:高一年级下册数学暑假作业答案及解析