广东实验中学2015—2015学年高一级模块考试数 学 本试卷分基础检测与能力检测两部分,共4页.满分为150分。考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答卷上,并用2B铅笔填涂学号. 2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.参考公式:1.锥体的体积公式,其中是锥体的底面积,是锥体的高;2.柱体的体积公式,其中是柱体的底面积,是柱体的高3.球的体积公式为,其中R为球的半径;第一部分 基础检测(共100分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线(为实常数)的倾斜角的大小是( )A. B. C. D..右图是水平放置的的直观图,轴,,则是( )A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形.给出下列命题:垂直于同一直线的两直线平行.同平行于一平面的两直线平行.同平行于一直线的两直线平行.平面内不相交的两直线平行.其中正确的命题个数是( )A.1 B.2 C.3 D.4.三棱锥的高为3,侧棱长均相等且为,底面是等边三角形,则这个三棱锥的体积为( ) A. B. C. D..给?四个命题:若一个角的两边分别平行于另一个角的两边,则这两个角相等;( ,( 为两个不同平面,直线a ( ( ,直线b ( ( ,且a∥( ,b∥( , 则( ∥( ;( ,( 为两个不同平面,直线m⊥( ,m⊥( 则( ∥( ;( ,( 为两个不同平面,直线m∥( ,m∥( , 则( ∥( .其中正确的是( )A.(1) B.(2) C.(3) D.(4).如图,在正方体中,异面直线与所成的角为 ( )A. B. C. D..直线和的位置关系是( ) A.平行 B.垂直 C.相交但不垂直 D.不能确定.如右图将正方形沿对角线折成直二面角,有如下四个结论:①⊥;②△是等边三角形;③与所成的角为60°;④与平面所成的角为60°.其中错误的结论是( )A.① B.② C.③ D.④二、填空题:本大题共4小题,每小题6分,共24分. .过点(1,2)且与直线平行的直线方程是 ..已知直线和平面,且,则与的位置关系是 ..已知点,点在轴上,且,则点的坐标是 ..如图,一个底面半径为的圆柱形量杯中装有适量的水若放入一个半径为的实心铁球,水面高度恰好升高,则____________.三、解答题:本大题共3小题,每项小题12分,共36分.解答应写出文字说明、证明过程或演算步骤..如图,在空间四边形中,分别是和上的点,分别是和上的点,且,求证:三条直线相交于同一点。14.并且和轴的正半轴、轴的正半轴所围成的三角形的面积是的直线方程。15.如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心, 1)求证:平面.2)求证:平面第二部分 能力检测(共50分)四、选择题:本大题共2小题,每小题5分,共10分. .若直线不平行于平面,则下列结论成立的是( )A.内的所有直线都与直线异面 B.内不存在与平行的直线C.内的直线都与相交 D.直线与平面有公共点.如图,正四面体的顶点分别在两两垂直的三条射线上,则在下列命题中,错误的为( )A.是正三棱锥B.直线平面C.直线与所成的角是D.二面角为五、解答题:本大题共3小题,共40分.解答应写出文字说明、证明过程或演算步骤.. (本小题满分13分) 已知四棱锥的正视图是一个底边长为、腰长为的等腰三角形,图4、图5 分别是四棱锥的侧视图和俯视图.的侧面和的面积.19.13分)如图,在长方体中,,,点在棱上移动. (1)证明:;(2)等于何值时,二面角的大小为?如图,棱柱中,四边形是菱形,四边形是矩形,.求证:平面;求点到平面的距离;③ 求直线与平面所成角的正切值.参考答案第一部分 (共100分)一、选择题:本大题共小题,每小题分,共0分,在每小题给出的四个选项中,只有一项是..二、填空题:本大题共小题,每小题分,共分. 10.或 11. 12. . 三、解答题:本大题共小题,共分.解答应写出文字说明、证明过程或演中,分别是和上的点,分别是和上的点,且,求证:三条直线相交于同一点。解:连接EF,GH,因为所以且 ……………………………2分所以共面,且不平行, ……………………………3分不妨设 …………………4分则;………………………6分……………………………8分又因为 ……………………………10分所以三条直线相交于同一点O。……………………………12分14.求经过点并且和轴的正半轴、轴的正半轴所围成的三角形的面积是的直线方程。解:因为直线的斜率存在,所以设直线方程为,即 ……………………………2分令 ……………………………6分由 ……………………………8分因为,解得:…………10分因为 ……………………………11分所以直线方程为 ……………………………12分15.如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD的中心, 求证:平面.平面1)证明:连接共线, ………………2分因为M,N为中点,所以因为……………………………5分2)连,因为,, ① ……………………………8分 ② ……………………………11分因为以及 ①②得::平面。 ……………………………12分第部分 (共50分)五、解答题:本大题共3小题,共分.解答应写出文字说明、证明过程或演算步骤.的正视图是一个底边长为、腰长为的等腰三角形,图4、图5 分别是四棱锥的侧视图和俯视图.求四棱锥的侧面和的面积. 解:依题意,可知点在平面上的正射影是线段的中点,连接, 则平面. …………… 2分 在等腰三角形中,,, 在Rt△中,, …………… 4分 过作,垂足为,则F为AB中点,连接,…………5分在Rt△中, , ………… 6分∴. …………… 8分∴△的面积为. ………………………9分∵平面,平面,∴. ∵,,∴平面. …………… 11分∵平面, 依题意得. ∴△的面积为.………………………13分19(本小题满分13分)如图,在长方体中,,,点在棱上移动. (1)证明:;(2)等于何值时,二面角的大小为?证明:如图,连接, ……………………………1分依题意有:在长方形中,,.…… 6分(上式每一个垂直关系或包含关系各1分)(2)解:过作交于,连接. ……………………………7分又, 所以为二面角的平面角.……10分∴,,. 设,则, 又,所以,解得故时,二面角的平面角为.………………………… 13分20.如图,棱柱中,四边形是菱形,四边形是矩形,.求证:平面;求点到平面的距离;③ 求直线与平面所成角的正切值.证明:……………4分解:,所以点到面的距离相等,………6分设点到面的距离相等,则为正三角形,………7分又 ………8分,点到平面的距离为。 ………9分解:过作 ………10分 ………12分为直线与平面所成线面角,………13分在中,,所以直线与平面所成角的正切值为。 ………14分EFE广东省实验中学2015-2016学年高一上学期期末模块考试数学
本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaoyi/294359.html
相关阅读:高一数学上册期中考试题(带答案)[1]