高一数学必修1知识网络
集合
函数
附:
一、函数的定义域的常用求法:
1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数 中 ;余切函数 中;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
二、函数的解析式的常用求法:
1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法
三、函数的值域的常用求法:
1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法
四、函数的最值的常用求法:
1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法
五、函数单调性的常用结论:
1、若 均为某区间上的增(减)函数,则 在这个区间上也为增(减)函数
2、若 为增(减)函数,则 为减(增)函数
3、若 与 的单调性相同,则 是增函数;若 与 的单调性不同,则 是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。
六、函数奇偶性的常用结论:
1、如果一个奇函数在 处有定义,则 ,如果一个函数 既是奇函数又是偶函数,则 (反之不成立)
2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数 和 复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数 的定义域关于原点对称,则 可以表示为 ,该式的特点是:右端为一个奇函数和一个偶函数的和。
表1指数函数 对数数函数
定义域
值域
图象
性质过定点 过定点
减函数增函数减函数增函数
表2幂函数
奇函数
偶函数
第一象限性质减函数增函数过定点
本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaoyi/48840.html
相关阅读:集合的概念