Kolmogorov and Contemporary Mathematics)"的学术会议。会议规格之高,与国际数学家大会类似:12位当今一流的数学家做1小时主题报告,其中包括菲尔兹奖获得者斯梅尔(S. Smale,1930-)、诺维科夫(S. P. Novikov,1938-),沃尔夫奖获得者阿诺尔德(V. I. Arnold,1937-)、希策布鲁赫(F. E. P. Hirzebruch,1927-)、卡尔森(L. Carleson,1928-)和西奈依(Y. G. Sinai,1935-)。更多的人做了45分钟报告与20分钟报告。这些报告或多或少地触及了柯尔莫哥洛夫(A. N. Kolmogorov)极广的研究领域。4月29日,莫斯科大学又举行纪念会,隆重纪念这位20世纪的伟大数学家、数学教育家百年诞辰。
早年的经历
柯尔莫哥洛夫1903年4月25日出生于俄国坦波夫省,1987年10月20日在莫斯科逝世。他的祖父是牧师,父亲卡塔耶夫(N. Kataev)是位农学家,曾遭到流放,十月革命后回来担任农业部某部门的领导,1919年在战斗中牺牲。母亲出身贵族,因难产而死。柯尔莫哥洛夫的童年是在外祖父家度过的,姨妈把他抚养成人。尽管出生后就失去了母爱,也从未得到父爱,但柯尔莫哥洛夫是在关爱中长大的。在很小的时候,姨妈就教育他热爱学习知识,热爱大自然。五六岁时,柯尔莫哥洛夫就独自发现了奇数与平方数的关系,体会到了数学发现的乐趣。外祖父家办了一份家庭杂志《春燕》,年幼的柯尔莫哥洛夫竟然负责起其中的数学栏目来,他把自己的上述发现发表在杂志上。
6岁时,他随姨妈去了莫斯科,在一所被认为是当时最进步的预科学校读书。求学期间,柯尔莫哥洛夫的兴趣异常广泛,他认真学习了生物学和物理学;14岁时,他从一部百科全书中学习了高等数学。他对象棋、社会问题和历史也产生了兴趣。
1920年中学毕业后,柯尔莫哥洛夫当了短时间的列车售票员;工作之余,他写了一本关于牛顿力学定律的小册子。同年,柯尔莫哥洛夫进莫斯科大学学习。除了数学,他还学习了冶金和俄国史。他对历史特别着迷,曾写了一篇关于15-16世纪诺夫格勒地区地主财产的论文。关于这篇论文,他的老师、著名历史学家巴赫罗欣(S. V. Bakhrushin)说:
你在论文中提供了一种证明,在你所研究的数学上这也许足够了,但对历史学家来说是不够的,他至少需要五种证明。
也许这位历史教授的回答对柯尔莫哥洛夫产生了重要影响:他选择了只需要一种证明的数学。
突入数学王国
在莫斯科大学,柯尔莫哥洛夫听大数学家鲁津(N. N. Luzin,1883-1950)的课,且与鲁津的学生亚历山德罗夫(P. S. Alexandrov,1896-1982)、乌里松(P. S. Urysohn,1898-1924)、苏斯林(M. Y. Suslin)等有了学术上的频繁接触。在鲁津的课上,这位一年级的大学生竟反驳了老师的一个假设,令人刮目相看。柯尔莫哥洛夫还参加斯捷班诺夫(V. Stepanov,1889-1950)的三角级数讨论班,解决了鲁津提出的一个问题。鲁津知道后对他十分赏识,主动提出收他为弟子。
尽管柯尔莫哥洛夫还只是一名大学生,但他却取得了举世瞩目的成就:1922年2月他发表了集合运算方面的论文,推广了苏斯林的结果;同年6月,发表了一个几乎处处发散的傅里叶级数(到1926年,他进而构造出了处处发散的傅里叶级数)。据他自己说,这个级数是他当列车售票员时在火车上想出的。柯尔莫哥洛夫一时成为世界数学界一颗闪亮的新星。几乎同时,他对分析中的其他许多领域,如微分和积分问题、测度论等也产生了兴趣。
1925年,柯尔莫哥洛夫大学毕业,成了鲁津的研究生。这一年柯尔莫哥洛夫发表了8篇读大学时写的论文!在每一篇论文里,他都引入了新概念、新思想、新方法。他的第一篇概率论方面的论文就是在这一年发表的,此文与辛钦(A. Y. Khinchin,1894-1959)合作,其中含有三角级数定理,以及关于独立随机变量部分和的不等式,后来成了鞅不等式以及随机分析的基础。他证明了希尔伯特变换的一个切比雪夫型不等式,后来成了调和分析的柱石。1928年,他得到了独立随机变量序列满足大数定律的充要条件;翌年,又发现重对数律的广泛条件。此外,他的工作还包括微分和积分运算的若干推广以及直觉主义逻辑等。
本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaozhong/1188104.html
相关阅读:美国高中数学都学什么?