1.这部分内容中所占分数一般在10分左右.
2.题目类型为一个选择或填空题,一个与其他综合的解答题.
3.考查内容以向量的概念、运算、数量积和模的运算为主.
【考点透视】
"平面向量"是新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,多以低、中档题为主.
透析高题,知命题热点为:
1.向量的概念,几何表示,向量的加法、减法,实数与向量的积.
2.平面向量的坐标运算,平面向量的数量积及其几何意义.
3.两非零向量平行、垂直的充要条件.
4.图形平移、线段的定比分点坐标公式.
5.由于向量具有"数"与"形"双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.
6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.
【例题解析】
1. 向量的概念,向量的基本运算
(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念.
(2)掌握向量的加法和减法.
(3)掌握实数与向量的积,理解两个向量共线的充要条件.
(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.
(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.
(6)掌握平面两点间的距离公式.
例1(2007年北京卷理)已知 是 所在平面内一点, 为 边中点,且 ,那么( )
A. B. C. D.
命题意图:本题考查能够结合图形进行向量计算的.
解:
故选A.
例2.(2006年安徽卷)在 中, ,M为BC的中点,则 ______.(用 表示)
命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积.
解: , ,所以, .
例3.(2006年广东卷)如图1所示,D是△ABC的边AB上的中点,则向量 ( )
(A) (B)
(C) (D)
命题意图: 本题主要考查向量的加法和减法运算能力.
解: ,故选A.
例4. ( 2006年重庆卷)与向量 = 的夹解相等,且模为1的向量是 ( )
(A) (B) 或
(C) (D) 或
命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.
解:设所求平面向量为 由
另一方面,当
当
故平面向量 与向量 = 的夹角相等.故选B.
例5.(2006年天津卷)设向量 与 的夹角为 ,且 , ,则 __.
命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.
解:
例6.(2006年湖北卷)已知向量 , 是不平行于 轴的单位向量,且 ,则 = ()
(A) (B) (C) (D)
命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.
解:设 ,则依题意有
故选B.
例7.设平面向量 、 、 的和 .如果向量 、 、 ,满足 ,且 顺时针旋转 后与 同向,其中 ,则( )
(A) (B)
(C) (D)
命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.
常规解法:∵ ,∴ 故把2 (i=1,2,3),分别按顺时针旋转30 后与 重合,故 ,应选D
本文来自:逍遥右脑记忆 https://www.jiyifa.com/gaozhong/54319.html
相关阅读:几何的三大问题