欢迎来到逍遥右脑记忆网-免费提供各种记忆力训练学习方法!

多米尼克简化数学的方法

编辑: 路逍遥 关键词: 快速记忆法 来源: 逍遥右脑记忆




我清楚地记得我上小学的情况。那时候,我最害怕的事情莫过于背九九乘法表了。我背错了9×7的答案,作为惩罚,我的数学老师勒令我站在全班同学面前,把乘法表背九遍。更让我感到羞
辱的是,我每说出一个词,老师就会拿着尺子在我大腿后打一下——虽然打得不重,但仍是有感觉的,这仅仅是为了加深我对乘法表的印象。"9......啪,乘以1......啪,等于9......啪......"

  谢天谢地,现在的数学教学已经大大改进了。现在更强调的是解决问题的方式,实际的研究调查,以及运算的方法。这样做的目的是尽量使数学变得有意思且讨人喜爱,从而打破那种认为数学完全是一门抽象学科的观念。

  但是,学生们仍然不可避免地需要学会不借助计算器而进行加、减、乘、除。

  1994年的时候,我参加了一个电视节目。主持人请我在现场观众面前进行心算,我欣然领命,结果算得比计算器还快,随后他又请我向大家揭开这个谜底。但是电视上的短短几分钟时间,根本不足以充分解释我所使用的方法,所以许多观众仍然对此迷惑不解,没有人能够领会。

  其实,如果你知道一些简算方法,进行这样的心算非常容易。我们先来举个加法的例子。

  314

  231

  721

  510

  + 122

  我以前所学的把几个数相加的方法是这样:从右到左把每一竖列相加,同时注意满十向前进位。但是对于心算来说,这样的方法便有点困难,甚至是不合理的,因为最后的答案是从左到右读出来的。比如1898,我们不会说"八,九十,八百,一千"。既然如此,为什么计算要采取相反的顺序呢?

  试试从左边开始进行加法心算。当你得到相加的总和时,你会发现这样的方法更自然:"一千八百......一千八百九十......一千八百九十八!"

  我刚才选择的是比较小的数字,不须进位。不过即使需要进位,我们在相加时也能够很容易地对总和进行调整。

  你来试试下面这个运算:

  412

  131

  342

  212

  + 731

  这一次,当你从左到右依次相加时,需要把百位数的和从1700调整为1800。(答案:1828)

  经过适当的练习,你应该能够在头脑里映射出每竖列数字的和,这样你便可以进行更大数字的加法运算了。

  在我的演示中,我能够蒙上眼睛,心算10个四位数相加。下面我告诉你我是怎样做的,如果你学会了多米尼克体系,你也能够做到。

  我的小花招

第一步,准备四处场景,用来安置4个二位数,每个二位数用多米尼克体系人物进行代替。

看看你的屋子外边。把屋顶的左顶部作为第一处场景。斜对着的右边,一个人靠在窗户外。再靠右一点,第三个人站在梯子上。最后,再靠右,第四个人站在地上。这4个人的位置大致形成一条从左到右、由高到低的对角线。

现在你已经为加法心算作好准备了。接下来你会被蒙上眼睛。请一个人写下10个一位数,排成一个竖列,同时要求他一边写一边大声地读出来。当你听到这些数字,便把它们加起来。得到最后的总和后,转译为多米尼克人物。把这个人物安置到屋子外相应的地点,记住这个场景。接着,请观众继续第二竖列的数字。

  比如:

  7364

  4201

  3871

  6728

  2609

  8735

  1312

  5236

  9043

  + 7492

  第一竖列的和:52=EB 俄妮·卜莱登

  (Enid Blyton)

  第二竖列的和:42=DB 大卫·鲍伊

  (David Bowie)

  第三竖列的和:35=CE 克林特·伊斯特伍德

  (Clint Eastwood)

  第四竖列的和:41=DA 大卫·艾登堡

  (David Attenborough)

  52是第一竖列数字的和。将数字转译为人物,我们得到俄妮·卜莱登(Enid Blyton,EB=52)。想像俄妮·卜莱登站在房子的屋顶上。这个怪异的情景会让你牢牢记住数字52。接着往右进行第二竖列。

  当每个数字被读出来的时候,将它们挨个相加,得到第二个和:42。这次是大卫·鲍伊(David Bowie,DB=42)靠在窗外。你可以同时对情景进行夸张,以便加深记忆。

  再紧接着的两竖列数字的和是35和41,分别代表克林特·伊斯特伍德(Clint Eastwood,CE=35)站在梯子上,大卫·艾登堡(David Attenborough,DA=41)在地上扶持着梯子。这样,4列数字的和就被简化为4幅简单易记的场景。

  现在,你可以告诉你的观众你开始进行心算。迅速地回想那些场景,但同时告诉观众你正在快速浏览所有的数字,以此来迷惑他们。

  52

  42

  35

  + 41

  56591

  最后,你只要把这四个数按照相应的位数对齐,再进行简单的加法运算便可以了。当你缓缓地大声说出最后的总和时,所有的人都会以为你有照相存储式的记忆,或者你根本就是个活计算器!

  但是不管怎样,你最好能够运用一些加法技巧,它们既有效又可靠,能够大大降低出错的几率。

  可以试着把某些数字"化整"以后再相加。比如:

  59+85=144

  如果你先把59变为60,跟85相加后,再从中减去1,计算就会容易得多。

  60+85-1=144

  运用"化整"的方法来练习下面的算式:

  99+76=?

  68+52=?

  81+55=?

  198+66=?

  151+75=?

  349+60=?

  乘法

  我猜想,你所学的乘法运算肯定跟我当时学的是一样的步骤:

  78

  ×67

  546

  468

  5226

这种传统的方法当然是很可靠的,但是如果要用它来进行心算,那就太困难了,因为其中包括若干独立的步骤:先进行两次乘法,随后再将得到的两个乘积相加。

  我们可以采用一个更快捷的方法,使这些步骤同时结合起来:

  36

  × 41

  1476

  这是怎么算出来的呢?

  1. 先从个位开始:6×1=6

  2. 然后交叉相乘:3×1,6×4

  3. 将2的两个结果相加:3+24=27

  4. 写下7

  5. 最后将十位相乘(3×4),再加上3中剩下的数字2,得到14

  这些说明看上去很复杂,但经过练习,它实际上是很容易使用的,甚至对于三位数或四位数都适用:

  241

  × 357

  86037

  1. 7×1= 7

  2.(4×7)+(1×5)= 33

  3.(2×7)+(1×3)+(4×5)= 37

  4.(2×5)+(4×3)= 22

  5. 2×3= 6

  86037

  在算术中,你应该尝试去发现规律或模式。注意下面这个例子,两个数字的十位数相同。

  17

  × 14

  ? ?

  如果是这种情况,计算更简便。

  1. 把4提出来,跟17相加,得到21

  2. 将这个数乘以10;换句话,就是在21后添个0,得到210

  3. 把7×4的积28,跟210相加,得到答案238

  28

  × 23

  ? ?

  1. 类似地,把3跟28相加,得到31

  2. 注意这次是将31乘以20;换句话,将31乘以2再添个0,得到620

  3. 最后3×8=24,加上620,答案是644

  现在你来试试下面的乘法算式,不要用笔和纸:

  16

  × 12

  ? ?

  26

  × 24

  ? ?

  21

  × 29

  ? ?

  32

  × 31

  ? ?

  如果你觉得你非常擅长心算,为什么不试试去挑战莎昆塔拉·戴维(Shakuntala Devi)女士的世界记录?1980年,在伦敦的帝国学院,这位印度数学家进行了下面这两个13位数的乘法运算,未借助任何工具,用的仅仅是大脑;而这两个数字是由学院计算机系随意抽取的。

  7 686 369 774 870

  × 2 465 099 745 779

  ?

  她算出了正确的答案18 947 668 177 995 426 462 773 730,所用时间仅为28秒!

  最后的小花招

  最后我来教你一个容易表演的数学小花招。

  让某个人随便写下一个五位数,假设它是45055。然后告诉他接着该轮到你在下面写上另一个数字。不过你要写的并不是一个随意的数字,你必须保证你写的这个数字与上面第一个数字相加所得到的数每一位都是9,这样你该写的数字便是54944。

  把笔交回给对方,重复这个过程。如果他的下一个数字是21813,那么你的数字就是78186。当他写下最后一个五位数时,你便能够马上得出最后的和。比如,如果他最后的数字是69683,那么此时你要做的便是在这个数字前面添上2,再从个位上减掉2。这样,得到答案269681。

  看看下面的算式,你应该很容易地明白这个过程:

  45055

  54944

  21813

  78186

  + 69683

  269681

  这个花招绝对不会出错,而你的观众将会感到大惑不解!(如果最后一个数的个位恰好是0,那么再从十位上减去1;比如33360,最后得到233358。)

  为什么会这样呢?因为前4个数相加的和总是199998 ——也就是比200000少2。
 


本文来自:逍遥右脑记忆 http://www.jiyifa.com/jiyifa/16.html

相关阅读:对初学者学习记忆的一些建议
王峰记忆法的记忆方法简介
提高记忆能力的常用记忆法
进行违背常理联想的三种方法
语音联想


闂傚倸鍊烽懗鍓佸垝椤栫偑鈧啴宕ㄧ€涙ê浜辨繝鐢靛Т閸婂绱撳鑸电厱妞ゆ劑鍊曢弸鏃堟煟濠靛棛鍩i柡宀嬬到铻栭柍褜鍓熼幃褎绻濋崶椋庣◤闂佸搫绋侀崢浠嬫偂閵夛妇绠鹃柟瀵稿仧閹冲懏銇勯敐鍛骇缂佺粯绻堥崺鈧い鎺嶇椤曢亶鏌℃径瀣仸妞ゃ儲绻堝娲箹閻愭彃濡ч梺鍛婂姀閺呮粌鈻撴禒瀣拺閻犲洤寮堕幑锝夋煙閾忣偅灏柨鏇樺灲閺屽棗顓奸崨顔锯偓顒勬煛婢跺﹦澧戦柛鏂块叄閵嗗懘寮婚妷锔惧幍闂佺粯鍨惰摫缁炬崘宕电槐鎺楊敊閼恒儱鏆楃紓浣介哺閹瑰洤鐣峰鈧崺鈩冩媴鏉炵増鍋呴梻鍌欐祰濡椼劑姊藉澶婄9婵犻潧顑囧畵渚€鎮楅敐搴℃灍闁稿浜濋妵鍕冀閵娧屾殹濡炪倖鏌ㄥú顓烆潖濞差亜宸濆┑鐘插閸n參姊洪幖鐐插闁稿鍔曢埥澶愭偨缁嬭法鍔﹀銈嗗笒鐎氼參鎮¢悢鍛婂弿婵☆垳鍘х敮鑸电箾閸涱喚鎳呯紒杈ㄥ笚濞煎繘濡歌閻eジ姊鸿ぐ鎺濇濠电偐鍋撴繝纰夌磿閸忔﹢寮崒鐐村仼閻忕偟枪娴滅偓銇勯弴妤€浜鹃梺璇″枛閸㈡煡鍩㈡惔銈囩杸闁圭虎鍨版禍鎯р攽閻樺疇澹樼痪鎯ь煼閺屻劌鈹戦崱姗嗘¥濡炪倐鏅濋崗姗€寮诲☉妯锋闁告鍋涢~鈺呮⒑鏉炴媽顔夐柡鍛█楠炲啰鎹勭悰鈩冾潔闂佸搫璇為崘鍓р偓杈╃磽閸屾艾鈧摜绮旈棃娴虫盯宕橀鑲╃枃闂佽宕橀褍顔忓┑鍥ヤ簻闁哄啫娲よ闁诲孩淇哄▍鏇犳崲濞戞埃鍋撳☉娆嬬細闁活厼顑呴湁婵犲ň鍋撶紒顔界懇瀹曟椽鍩€椤掍降浜滈柟鍝勬娴滈箖姊虹粙鍖″姛闁硅櫕鎹囬弫鍐閵堝懐顓煎銈嗘⒐閸庡啿鐣烽妷銉㈡斀闁绘劕寮堕ˉ婊勭箾鐎电ǹ鍘撮柟顖氳嫰閻f繈宕熼鍌氬箥缂傚倸鍊烽悞锕傛晪婵犳鍠栭崯鎵閹烘梹宕夐柧蹇涒偓娑氶┏缂傚倷绀侀惌鍌涚閸洖鏄ラ柛鏇ㄥ灠缁€鍐喐韫囨洜鐭嗛柍褜鍓熷铏规嫚閹绘帩鍔夌紓浣割儐鐢繝寮€n喗鈷戠紒瀣儥閸庡繒绱掓径濠傤暢闁告帗甯掗~婵嬵敄閻愬瓨銇濇い銏℃瀹曨亪宕橀鍕劒闂傚倸鍊风粈渚€骞栭锔藉亱闁糕剝鐟ч惌鎾绘倵濞戞鎴﹀矗韫囨稒鐓熼柡鍌氱仢閹垿鏌¢崪浣稿⒋闁诡喗锕㈤幃娆戞崉鏉炵増鐫忛梻浣藉吹閸犳劗鎹㈤崼銉ヨ摕闁绘梻鍘ч崙鐘炽亜閹扳晛鐏╁┑顔芥礀閳规垿鎮╅顫濠电偞鎸婚崺鍐磻閹炬惌娈介柣鎰皺鏁堥梺绯曟杹閸嬫挸顪冮妶鍡楃瑨閻庢凹鍓涢埀顒佽壘椤︻垶鈥︾捄銊﹀磯濞撴凹鍨伴崜杈╃磽閸屾氨袦闁稿鎹囧缁樻媴閻熼偊鍤嬬紓浣割儐閸ㄥ墎缂撴禒瀣睄闁稿本绮庨悾鑸电節閵忥絽鐓愰柛鏃€娲滅划濠氬Ψ閳哄倻鍘电紓浣割儏濞硷繝顢撳Δ浣典簻閹兼番鍨哄畷宀勬煛瀹€瀣М闁糕晪绻濆畷妤呮晝閳ь剛绱炴繝鍌滄殾闁挎繂鐗滃Σ濠氭⒑瀹曞洨甯涙俊顐㈠暙椤曪綁骞橀钘夆偓鐑芥煕韫囨挻鎲搁柣顓燁殜濮婃椽鎳¢妶鍛咃綁鏌涢弬鐐叉噹缁躲倕鈹戦崒婧撳湱绮婚弻銉︾厪闊洤顑呴埀顒佹礉缁绘岸姊绘担鍛靛綊寮甸鍕闁荤喐鍣村ú顏勎у璺侯儑閸樺崬鈹戦悙鍙夘棡闁告梹娲熼幃姗€鍩¢崒銈嗩啍闂佺粯鍔曞鍫曞窗濡皷鍋撳▓鍨灓闁轰礁顭烽妴浣肝旈崨顓狅紲濠电姴锕ら崯鎶筋敊婢舵劖鈷掑ù锝呮啞閹牓鏌eΔ鈧Λ婵婃闂佽顔栭崰姘舵儗閹剧粯鐓曢柨鏃囶嚙楠炴劙鏌涚€n偅灏い顐g箞椤㈡鎷呯憴鍕伆婵犵數濮撮惀澶愬Χ閸曨偅鍎撻梻浣筋嚃閸n噣宕抽敐澶堚偓浣肝熺悰鈩冩杸闁诲函缍嗛崑鍛存偩閸洘鈷掑ù锝呮啞閹牊銇勮閸嬫捇姊洪悷鏉挎闁瑰嚖鎷�/闂傚倷绀侀幖顐λ囬锕€鐤炬繝濠傛噺瀹曟煡鏌涢幇鍏哥凹闁稿繑绮撻弻銈囩矙鐠恒劋绮垫繛瀛樺殠閸婃牜鎹㈠┑瀣棃婵炴垶甯炲﹢鍛攽閻愭彃鎮戦柛鏃€鐟╁濠氭晲婢跺á鈺呮煏婢跺牆鍔村ù鐘层偢濮婃椽宕妷銉ょ捕濡炪倖娲﹂崣鍐春閳ь剚銇勯幒鍡椾壕濠电姭鍋撻柛妤冨亹閺嬪秹鏌曡箛瀣仾妞ゎ偅娲樼换婵嬫濞戞艾顤€闁诲孩纰嶅銊╁焵椤掑倹鍤€閻庢凹鍘奸…鍨熼悡搴g瓘濠电偛妯婃禍婵嬪煕閹寸偑浜滈柟鏉垮绾捐法绱掗幇顓燁棃闁哄本绋撻埀顒婄秵閸嬪棙鏅堕鍌滅<闁稿本绋戝ù顔筋殽閻愬弶顥㈢€殿喖鐖奸獮鎰償椤斿吋娅� bjb@jiyifa.com 濠电姷鏁搁崑鐐哄垂閸洖绠板Δ锝呭暙绾惧鏌熼幆褏鎽犻柛娆忕箻閺屾洟宕煎┑鎰ч梺鍝勬媼閸撶喖骞冨鈧幃娆戞崉鏉炵増鐫忔俊鐐€曠换妤佺椤掑倹顫曢柟鎯х摠婵挳鏌涘┑鍕姢妞ゆ柨顦靛铏圭磼濡粯鍎撶紓浣介哺濞茬喖宕洪埀顒併亜閹哄棗浜惧┑鐘亾闂侇剙绉寸壕鍧楁煙鐎电ǹ校妞ゎ偅娲樼换婵嬫濞戝崬鍓伴柣搴㈣壘椤︿即濡甸崟顖氱闁瑰瓨绺鹃崑鎾诲及韫囧姹楅梺鍝勮閸庢煡宕愰崼鏇犲彄闁搞儯鍔嶇亸鐗堛亜閵壯冣枅闁哄矉绲介埞鎴﹀炊閳哄倸鍨遍柣搴ゎ潐濞叉ê顫濋妸鈺佺闁绘ǹ顕х粻鐢告煙閻戞ɑ鐓i柟顕嗙秮濮婂宕掑顑藉亾閸濄儮鍋撳銉ュ鐎规洘鍔欓獮瀣晝閳ь剟鎮為崹顐犱簻闁圭儤鍩婇弨濠氭倵濮樼偓瀚�