五年级上册数学复习资料(第二次整理)
一、数与代数
1、像0,1,2,3,4,5,6……这样的数是自然数。最小的自然数是0,没有最大的自然数,所有的自然数都是整数,整数不全是自然数。
2、像-3,-2,-1,0,1,2,3,……这样的数是整数。(注:整数包括自然数)
3、倍数和因数:倍数和因数是相互依存的。如:4×5=20,就可以说20是4和5的倍数,4和5是20的因数。(注意:我们只在自然数(0除外)范围内研究倍数和因数。)
* 判断题或填空题易出。如:4×5=20,4是因数,20是倍数,这是错误的。
*一个数的倍数有无数个,倍数的个数是无限的,而因数的个数是有限的。一个数最大的因数和最小的倍数都是它本身。X
4、找因数:找一个数的因数,一对一对有序地找就不会重复和遗漏。①一个数最小的因数是1,②最大的因数是它本身。③一个数因数的个数是有限的。1的因数只有1个,就是1。
如:36的因数有:1,36,2,18,3,12,4,9,6
5.找倍数:从1倍开始有序地找,①一个数的倍数的个数是无限的,②一个数没有最大的倍数,③最小的倍数是它本身。
例:一个数最大的因数与最小的倍数是18,这个数是(18)。
6、奇数和偶数:是2的倍数的数叫偶数,特征是:个位上是0,2,4,6,8。如:2,4,6,8等等。不是2的倍数的数叫奇数。特征是:个位上是1,3,5,7,9。如:1,3,33,99等等。
7、质数:一个数只有1和它本身两个因数,这个数叫质数。如:2,3,7,11等等。
8、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。合数至少有3个因数。如:4,12,49,36,51等等。注意:1既不是质数也不是合数。
例:最小的质数(2),最小的合数(4)最小的奇数(1)。
1、3、5、7、19、29、49、65、51当中是质数的有(3,5,7,19,29 )。
两个都是质数的连续自然数是:2,3。既是偶数又是质数的是:2。
两个质数的乘积是合数。
例题:下面几个判断题都是错误的。
1、一个自然数不是质数就是合数。
2、所有的奇数都是质数。
3、所有的偶数都是合数。
9、按一个数的因数分,自然数可以分为:(质数),(合数),(1)三类。按一个数的奇偶性分,自然数可以分为(奇数和偶数)两类。(0是最小的偶数,暂不研究)
10、(翻杯子、渡船、开关灯……)经过偶数次变化,与开始状态相同;经过奇数次变化,与开始状态相反。
11、2,3,5的倍数特征:个位上是0,2,4,6,8的数都是2的倍数。个位上是0或5的数都是5的倍数。各个数位上数字之和是3的倍数,这个数就是3的倍数。
既是2的倍数又是5的倍数的特征:个位是0的数。
既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数;②各个数位上的数字的和是3的倍数
既是3的倍数又是5的倍数的特征:①个位是0或5的数;
②各个数位上的数字的和是3的倍数
既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数; ②各个数位上的数字的和是3的倍数
9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数。
12、数的奇偶性:偶数+偶数=偶数 奇数+奇数=偶数偶数+奇数=奇数
13、分数单位:把单位“1”平均分成若干份,表示这样的1份的分数叫分数单位。十八分之五的分数单位是十八分之一等等。
14、分子小于分母的分数是真分数,真分数?1
分子大于或等于分母的分数是假分数,假分数≥1
带分数是由整数和一个真分数组成,带分数>1
假分数化成带分数的方法:分子除以分母,商为分数的整数部分,分母不变,余数为分子。带分数化成假分数的方法:分母不变,假分数的分母乘整数部分加原分子作分子。整数化成假分数:分母乘以整数做分子。
例:1等于2除以2。
易错题:1、分数单位是九分之一的最大真分数是( ),最小假分数是( ),最小带分数是( )。
2、分母是8的最大真分数( ),分子是8的最大真分数( )。
15、分数与除法的关系:被除数相当于分子,除数相当于分母,商相当于分数值(除数不为0)。
分数的基本性质:分数的分子与分母同时乘或除以相同的数(0除外),分数大小不变。
例题:把十六分之十的分母减去8,要使分数大小不变,分子减去( )。
16、几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做他们的最大公因数。找两个数最大公因数的方法:
1、记好一些规律,提高速度。
规律一:4和5,8和7这些数是相邻的两个数,公因数只有1,最大公因数是1;
规律二:3和7, 7和11这些都是质数,公因数只有1,最大公因数是1;
规律三:5和9 , 3和10非倍数关系的质数和合数,最大公因数是1;
规律四:7和28 , 6和36 倍数关系的两个数,最大公因数是较小的那个数。
2、短除法和列举法解决一些比较复杂的情况:36和48 24和16
17、约分:把一个分数的分子、分母同时除以公因数,分数值不变,这个过程叫做约分。约分的方法:一是用公因数一个一个地去除,二是直接用两个数的最大公因数去除。分子、分母只有公因数1,不能再约分的分数,叫做最简分数。
18、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
找最小公倍数的方法:
方法一:最大公因数是1的两个相邻的自然数,最小公倍数是乘积;
方法二:倍数关系的两个数,最小公倍数是较大的那个数;
方法三:短除法解决比较复杂的情况。
19、通分:把异分母分数分别化成和原分数相等的同分母分数,叫通分。通分的一般方法是:先求出原几个分母的最小公倍数,然后把分数分别化成用这个最小公倍数做分母的分数。
20、分数化小数的方法:用分子除以分母小数化分数的方法:把小数改写成分母是10、100、1000……的分数,再约分成最简分数。
21.分母不是整十,整百,整千的分数化小数,要用分母去除分子,除不尽的,可以根据(题目要求)按四舍五入保留几位小数。
22、整数加减法的交换律、结合律对分数加法同样适用。注意:观察分母的特点,能简算的要简算。
23、分数加减运算:
1、分母相同的分数相加减,分母不变,分子相加减。
2、分母不同的分数相加减,先通分,再按照同分母分数相加减的方法进行计算。
3、计算结果能约分的,要约成最简分数
24、如何比较分数的大小:
分母相同时,分子大的分数大;
分子相同时,分母小的分数大;
分子分母都不同时,通分再比。
25、分数基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数大小不变。
26、 的意义:①把单位“1”平均分成4份,表示这样的3份。②把3平均分成4份,表示这样的1份。
二、空间图形
1、常用的面积公式:
(1)长方形周长=(长+宽)×2
(2)正方形周长=边长×4
(3)正方形的面积=边长×边长
(4)长方形的面积=长×宽
(5)平行四边形的面积=底×高 S=ah
(6) 平行四边形底=面积÷高
(7)平行四边形高=面积÷底
(8)三角形的面积=底×高÷2 S=ah÷2
(9)三角形底=面积×2÷高 a = 2 S ÷ h
(10)三角形高=面积×2÷底
(11)梯形的面积=(上底+下底)×高÷2 S=(a+b)×h÷2
(12)梯形高=梯形面积×2÷(上底+下底)
(13)梯形上底=梯形面积×2÷高-下底
(14)梯形下底=梯形面积×2÷高-上底
例题:把一个平行四边形的框架拉成一个长方形,周长(和原相等),面积(比原大)。
2、单位换算(填空)
1公顷=10000平方米
1平方米=100平方分米 1平方米=10000平方厘米
1平方千米=100公顷
3、组合图形的面积(大题)参考本第76页。
三、数学与交通:
1、相遇问题:
基本公式:一个人走:速度×时间=路程
两个人同时相对而行:速度和×相遇时间=两人共走路程
甲走的路程+乙走的路程=两人共走的路程
2、 旅游费用:
①购票方案:根据人数的多少,价格的不同以及团体优惠人数的多少,合理选择一种方案购票或几种方案结合起购票。若只有A、B两种方案是,只要选择其中一种价格便宜的就行。
②租车问题: 两个原则:一是尽量多的使用更便宜的车;
二是空位越少越好。
3、看图找关系:
①读懂图表中的有关信息,一定要分析横轴与纵轴分别表示的是什么。
②在速度与时间的关系上,线往上画,说明提速;与横轴平行,说明匀速行驶;线往下画,说明减速。
③在时间与路程的问题上,线往上画,说明从某地出发;与横轴平行,说明原地不动;线往下画,说明又从终点回到某地。
四、图形的面积
1、求组合图形面积的方法:
① 分割法:根据图形和所给的条件,将图形进行合理的分割,形成基本图形,基本图形面积的和就是组合图形面积。
② 添补法:将图形所缺部分进行添补,组成几个基本图形。基本图形面积-添补的图形面积=组合图形面积。
2、不规则图形面积的估计与计算:
①数格子的方法;
②根据不规则图形确定近似的基本图形,量出求基本图形的面积是所需要的条件算出面积。
五、鸡兔同笼
方法:①列表法:一般采用取中间数列表的方法; ②画图法; ③假设法;
④列方程:根据关系式:“一种动物腿的条数+另一种动物腿的条数=腿的总条数”解答。
六、点阵中的规律
1、数与数之间的变化规律:根据已知数前后或上下之间的关系,找到其中的规律,得出相应的数。
2、图形与图形之间的变化规律:观察图形的变化,可以从图形的形状、数量、大小等方面入手,从中找到规律,推导出后面的图形。
七、可能性的大小
1、确定事件的表示方法:用1表示事件一定发生,用0表示事件一定不会发生。
2、可能出现的事件的表示方法:用分数表示可能性的大小,首先明确事件可能出现的所有情况作分母,其次把可能出现的结果做分子。
3、设计活动方案:充分认识用表示可能性的分数的含意,即:事件可能出现的所有情况作分母,把可能出现的结果做分子。
八、铺地砖
1、长方形的面积=长×宽, 正方形的面积=边长×边长
2、面积单位之间的关系:1平方米=100平方分米=10000平方厘米
1平方分米=100平方厘米
3、求地面铺地砖总块数的方法:
①用房间面积÷每块地砖的面积=所铺地砖的块数
②用每平方米所需的块数×房间总面积=所铺地砖的块数
③看长里有多少个地砖的边长,宽里有多少个地砖的边长,再用长里所需的块数乘以宽里所需的块数,
④用方程解
⑤所注意的问题:最后的结果不是整块数时,一定要用进一法却近似值,求出的钱数最后结果要自觉保留两位小数。
九、重点题目
1、本56页和57的《相遇》以及后习题,注意方程的规范书写步骤。
2、本58页和59页《旅游费用》以及后习题,尤其是租车问题,用画表分析,容易出错,但却是重点。
3、本61页《看图找关系》以及后习题第2题,注意图的横轴、纵轴表示的含义。
4、本80页《鸡兔同笼》和后习题,注意画表时表头的书写,单位的标注。
5、本93页《铺地砖》和习题,注意单位换算。这类题的方法步骤是:①先求卧室的面积 ②再求一块砖的面积 ③然后用卧室的面积÷一块砖的面积=至少需要的块数 ④最后用每块砖的钱数×块数=所需的钱数。
本文来自:逍遥右脑记忆 https://www.jiyifa.com/xiaoxue/103186.html
相关阅读:2014五年级下册数学教案(北师大版)
五年级数学奥数:小数问题
五年级数学第一单元分数乘法教学设计
解决问题的策略
第七单元获“联合国人居奖“的城市——统计教案(青岛版)
闂佺粯顨呴悧濠傖缚閸喓鐝堕柣妤€鐗婇~鏍煥濞戞瑧顣叉繝鈧导鏉戞闁搞儜鍐╂殽闁诲海鎳撳﹢閬嶅极鏉堛劎顩查柟鐑樻磻缁挾绱撻崘鈺佺仼闁轰降鍊濋獮瀣偪椤栨碍顔囬梺鍛婄懄閸ㄨ偐娑甸埀顒勬煟濮樼厧娅欑紒杈ㄧ箘閹风娀濡烽敂鐣屸偓顕€鎮峰▎蹇撯偓濠氬磻閿濆棛顩烽柛娑卞墮閺佲晠鎮跺☉鏍у缂傚秵妫冮幊鎾诲川椤旇姤瀚虫繛瀛樼矋娴滀粙鍩€椤掆偓閸婄懓锕㈤幍顔惧崥婵炲棗娴烽惌宀勬煙缂佹ê濮冪紒璺虹仛缁岄亶鍩勯崘褏绀€闁诲孩绋掗敋闁稿绉剁划姘洪鍜冪吹闂佸搫鐗嗙粔瀛樻叏閻斿吋鏅悘鐐跺亹閻熸繈鏌熼弸顐㈠姕婵犫偓娓氣偓楠炲秹鍩€椤掑嫬瀚夊璺侯儐缂嶁偓闂佹寧绋戞總鏃傜箔婢舵劕绠ラ柟绋块椤庢捇鏌i埡鍏﹀綊宕h閳绘棃寮撮悙鍏哥矗闁荤姵鍔х徊濂稿箲閵忋倕违闁稿本鍑瑰ú銈夋煕濞嗘劕鐏╂鐐叉喘瀵敻顢楅崒婊冭闂佸搫鐗嗛ˇ鎵矓閸︻厸鍋撳顒佹拱濠德や含閹噣顢樺┑瀣當闂佸搫顧€閹凤拷/闁哄鏅滅换鍐兜閼稿灚浜ゆ繝闈涒看濞兼劙鏌i妸銉ヮ仼闁哥偛顕埀顒€婀卞▍銏㈡濠靛牊瀚氱€瑰嫭婢樼徊娲⒑椤愶紕绐旈柛瀣墬缁傛帡骞嗛弶鎸庮啎 bjb@jiyifa.com 婵炴垶鎸鹃崑鎾存叏閵堝鏅悘鐐跺亹椤忚京绱撴担鍝ョ闁绘搫绱曢埀顒€婀遍崕鎴犳濠靛瀚夋い鎺戝€昏ぐ鏌ユ倶韫囨挻顥犻柣婵囩洴瀹曟氨鎷犻幓鎺斾患闂傚倸瀚ㄩ崐鎴﹀焵椤掑﹥瀚�