如,学“求一个数的几倍是多少”的应用题,重要的是建立“倍”的概念。引进这个概念,可出示2只一行的白蝴蝶图,再 2只、2只地出示3个2只的第二行花蝴蝶图,结合演示,通过循序答问,使学生清晰地认识到:花蝴蝶与白蝴蝶比较,白蝴蝶1个2只,花蝴蝶是3个2只;把一个2只当作1份,则白蝴蝶的只数相当于1份,花蝴蝶就有3份。用数学上的话说:花蝴蝶与白蝴蝶比,把白蝴蝶当作一倍,花蝴蝶的只数就是白蝴蝶的3倍,这样,从演示图形中让学生看到从“个数”到“份数”,再引出倍数,很快地触及了概念的本质。6.问答法引入概念采用问答式,能在疑、答、辩的过程中,步步探幽,引人入胜。7.作图法用直尺、三角板和圆规等作图工具画出已学过的图形,是学习几何的最基本的能力。通过作图揭示新概念的本质属性,就可以从画图引入这些概念。8.计算法通过计算能揭示新概念的本质属性,因此,可以从学生所迅速的计算引入新概念,如讲“余数”时,可以让学生计算下列各题:(1) 3个人吃10个苹果,平均每人吃几个?(2) 23名同学植100棵树,每人平均种几棵?学生能很容易地列出算式,当计算时,见到余下来的数会不知所措,这时教师再指出:(1)题竖式中余下的“1”;(2)题竖式中余下的“8”,都小于除数,在除法里叫做“余数”。学习新概念的方法很多,但彼此并不是孤立的,就是同一个内容的学习方法也没有固定的模式,有时需要互相配合才能收到良好的效果,如也可以这样引入“扇形’概念,让学生把课前带的一把摺扇一折一折地从小到大展开,引导学生注意观察,然后概括出:第一,折扇有一个固定的轴;第二,折扇的“骨”等长。然后再要求学生在已知圆内作两条半径,使它的夹角为20°、40°、120°、……引导学生观察所围成的图形与刚才展开的折扇有哪些相似之处,最后概括出扇形的意义。
本文来自:逍遥右脑记忆 https://www.jiyifa.com/xuexi/229739.html
相关阅读:“螺旋上升”学习法
作文得高分的技巧
开学准备五部曲
19条法则助你一路高升
如何提高口语水平?